Skip to main content
padlock icon - secure page this page is secure

Open Access Investigating intermittent stereoscopy: its effects on perception and visual fatigue

Download Article:
(PDF 848.7 kb)
In a context in which virtual reality making use of S3D is ubiquitous in certain industries, as well as the substantial amount of literature about the visual fatigue S3D causes, we wondered whether the presentation of intermittent S3D stimuli would lead to improved depth perception (over monoscopic) while reducing subjects’ visual asthenopia. In a between-subjects design, 60 individuals under 40 years old were tested in four different conditions, with head-tracking enabled: two intermittent S3D conditions (Stereo @ beginning, Stereo @ end) and two control conditions (Mono, Stereo). Several optometric variables were measured pre- and post-experiment, and a subjective questionnaire assessing discomfort was administered.

Our results suggest a difference between simple scenes (containing few static objects, or slow, linear movement along one axis only), and more complex environments with more diverse movement. In the former case, Stereo @ beginning leads to depth perception which is as accurate as Stereo, and any condition involving S3D leads to more precision than Mono. We posit that the brain might build an initial depth map of the environment, which it keeps using after the suppression of disparity cues. In the case of more complex scenes, Stereo @ end leads to more accurate decisions: the brain might possibly need additional depth cues to reach an accurate decision. Stereo and Stereo @ beginning also significantly decrease response times, suggesting that the presence of disparity cues at task onset boosts the brain’s confidence in its initial evaluation of the environment’s depth map. Our results concerning fatigue, while not definitive, hint at it being proportional to the amount of exposure to S3D stimuli.

7 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 14, 2016

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more