Skip to main content
padlock icon - secure page this page is secure

Subspace-Clustering-Based Multispectral Image Compression

Buy Article:

$17.00 + tax (Refund Policy)

This paper describes a subspace clustering strategy for the spectral compression of multispectral images. Unlike standard PCA, this approach finds clusters in different subspaces of different dimension. Consequently, instead of representing all spectra in a single low-dimensional subspace of a fixed dimension, spectral data are assigned to multiple subspaces having a range of dimensions from one to eight. For a given compression ratio, this tradeoff reduces the maximum reconstruction error dramatically. In the case of compressing multispectral images, this initial compression step is followed by lossless JPEG2000 compression in order to remove the spatial redundancy in the data as well.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 3, 2014

More about this publication?
  • CIC is the premier annual technical gathering for scientists, technologists, and engineers working in the areas of color science and systems, and their application to color imaging. Participants represent disciplines ranging from psychophysics, optical physics, image processing, color science to graphic arts, systems engineering, and hardware and software development. While a broad mix of professional interests is the hallmark of these conferences, the focus is color. CICs traditionally offer two days of short courses followed by three days of technical sessions that include three keynotes, an evening lecture, a vibrant interactive (poster) papers session, and workshops. An endearing symbol of the meeting is the Cactus Award, given each year to the author(s) of the best interactive paper; there are also Best Paper and Best Student Paper awards.

    Please note: for Purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more