Skip to main content
padlock icon - secure page this page is secure

A Machine Learning Regression scheme to design a FR-Image Quality Assessment Algorithm

Buy Article:

$17.00 + tax (Refund Policy)

A crucial step in image compression is the evaluation of its performance, and more precisely available ways to measure the quality of compressed images. In this paper, a machine learning expert, providing a quality score is proposed. This quality measure is based on a learned classification process in order to respect that of human observers. The proposed method namely Machine Learning-based Image Quality Measurment (MLIQM) first classifies the quality using multi Support Vector Machine (SVM) classification according to the quality scale recommended by the ITU. This quality scale contains 5 ranks ordered from 1 (the worst quality) to 5 (the best quality). To evaluate the quality of images, a feature vector containing visual attributes describing images content is constructed. Then, a classification process is performed to provide the final quality class of the considered image. Finally, once a quality class is associated to the considered image, a specific SVM regression is performed to score its quality. Obtained results are compared to the one obtained applying classical Full-Reference Image Quality Assessment (FRIQA) algorithms to judge the efficiency of the proposed method.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2012

More about this publication?
  • Started in 2002 and merged with the Color and Imaging Conference (CIC) in 2014, CGIV covered a wide range of topics related to colour and visual information, including color science, computational color, color in computer graphics, color reproduction, volor vision/psychophysics, color image quality, color image processing, and multispectral color science. Drawing papers from researchers, scientists, and engineers worldwide, DGIV offered attendees a unique experience to share with colleagues in industry and academic, and on national and international standards committees. Held every year in Europe, DGIV papers were more academic in their focus and had high student participation rates.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual papers for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more