Skip to main content
padlock icon - secure page this page is secure

A Numerical Study on Fluid Flow and Acoustic Characteristics of a Supersonic Impinging Jet Using Vorticity Confinement

Buy Article:

$30.00 + tax (Refund Policy)

The objective of this work is to numerically study the fluid flow and acoustic field of a supersonic impinging jet by applying the vorticity confinement (VC) method. For this aim, the three-dimensional compressible Navier-Stokes equations with the incorporation of the VC method are considered and the resulting system of equations is solved by using the sixth-order compact finite-difference scheme. To eliminate the numerical instability, a low-pass high-order filter is used. The nonreflective boundary conditions are applied for all the free boundaries and the radiated sound field is obtained by the Kirchhoff surface integration. Comparisons of the present results with the experimental data and other numerical simulations show that the solution methodology adopted based on the application of the VC method with the high-order compact finite-difference scheme provides a good prediction of the fluid flow and the acoustic field of the impingement region on coarser grids than that usually required in the LESs, and thus, the calculations of coarse grid LESs are improved.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2019

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more