Skip to main content
padlock icon - secure page this page is secure

Study on Natural Frequencies of Transverse Free Vibration of Functionally Graded Axis Beams by the Differential Quadrature Method

Buy Article:

$30.00 + tax (Refund Policy)

Functionally gradient materials with special mechanical characteristics are more and more widely used in engineering. The functionally graded beam is one of the commonly used components to bear forces in the structure. Accurate analysis of the dynamic characteristics of the axially functionally graded (AFG) beam plays a vital role in the design and safe operation of the whole structure. Based on the Euler-Bernoulli beam theory (EBT), the characteristic equation of transverse free vibration for the AFG Euler-Bernoulli beam with variable cross-section is obtained in the present work, and the governing equations of the beam are transformed into ordinary differential equations with variable coefficients. Using differential quadrature method (DQM), the solution formulas of characteristic equations under different boundary conditions are derived, and the natural frequencies of the AFG beam are calculated, while the node partition of a non-uniform geometric progression is discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2019

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more