Skip to main content
padlock icon - secure page this page is secure

Ultrasonic Study of Molecular Interactions in Polymeric Solution of Polypropylene Glycol-400 and Ethanol at 303 K

Buy Article:

$30.00 + tax (Refund Policy)

A comprehensive ultrasonic investigation of molecular interactions in the polymeric solution of polypropylene glycol (PPG)-400 and ethanol at 303 K has been performed using the data available in literature. Several acoustic parameters such as acoustic impedance, isothermal compressibility, molar sound velocity, molar adiabatic compressibility, internal pressure, free volume, van der Waals constants, molar cohesive energy and relaxation time have been explored. Thermo-dynamical parameters viz.: available volume, intermolecular free length, relative association, surface tension, pseudo-Gruneisen parameter, Debye temperature, diff usion constant, coefficient of thermal conductivity and latent heat of melting have been evaluated. Several thermo- elastic parameters such as Young modulus, shear modulus, bulk modulus and Poisson's ratio are also determined. Excess parameters are computed to study the relative molecular interactions and strength of interaction between the constituents of the polymer mixture. The volume expansivity data is used to evaluate Moelwyn-Hughes parameter, reduced volume, reduced isothermal bulk modulus, Sharma's constants, Huggins parameter, isobaric, isochoric, and isothermal lattice Gruneisen parameters, fractional free volume, repulsive exponent, Bayer's non-linear parameter, cohesive energy density and characteristic temperature. Schaaff 's collision factor theory, Jacobson's free length theory, Nomoto's relation, Van Dael-Vangeel relation, impedance dependence relation, Junjie relation and ideal mixing relation have been used to evaluate ultrasonic velocities in the system under study. The obtained results have been compared with earlier experimental results. The non-ideal behaviour of the mixture has been explained in terms of its composition and variation of its acoustical and thermo-dynamical parameters.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: September 1, 2019

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more