Skip to main content
padlock icon - secure page this page is secure

Sound Source Localization Using Head-Related Transfer Functions and Weighted Error Function

Buy Article:

$30.00 + tax (Refund Policy)

This study proposes a sound source localization method using binaural input signals. The method is based on the head-related transfer function (HRTF) database and the interaural transfer function (ITF) obtained from two measured input signals. An algorithm to reduce the effect of background noise on the localization performance in a noisy environment was adopted in the proposed localization method. Weighted error functions (WEFs), defined using the ITF and the ratio of HRTFs for two ears, were used with a special frequency weighting function derived to reduce the effect of noise and to render the WEF a physical meaning. Computer simulations confirmed that the weighting function can effectively reduce the effect of background noise on the localization performance even if the noise power is very high. Localization tests in an actual room confirmed that both the azimuth and elevation angles of sound source can be estimated simultaneously with high accuracy. In particular, the front-back and updown confusions, which are critical limitations for conventional localization methods, could be resolved using two input signals.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2019

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more