Skip to main content
padlock icon - secure page this page is secure

Applicability of Artificial Neural Network to Estimate Sound Transmission Loss of Ultrafine Glass Fiber Felts

Buy Article:

$30.00 + tax (Refund Policy)

In the present study, the sound transmission loss (STL) of ultrafine glass fiber felts in terms of areal density and sound frequency has been modeled by artificial neural network (ANN), the Law of Theoretic Mass and fitting polynomial, respectively. The STL of ultrafine glass fiber felts with the areal density ranging from 0 to 300 g/m2 and at the sound frequency ranging from 500 to 6300 Hz was employed as training data for ANN. By the optimization of ANN structure, the number of neurons in the two hidden layers was determined to 8 and 4 respectively. The mean squared error of the ANN model was only 0.191 and the correlation coefficient was 0.9989, which showed high accuracy for estimating the STL of the felts. Compared with other two models, the ANN model showed excellent agreement with the measured results and it's very appropriate for the estimation of acoustic properties of ultrafine glass fiber felts.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2019

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more