Skip to main content
padlock icon - secure page this page is secure

Broadband Vibrational Energy Harvesting with a Spherical Piezoelectric Transducer Devoted to Underwater Wireless Sensor Networks

Buy Article:

$30.00 + tax (Refund Policy)

A new sensing node container based on a spherical piezoelectric transducer is proposed. This device provides broadband vibrational energy harvesting and sensing facilities intended for underwater wireless sensor networks. The transducer is composed of two acrylic glass (PMMA) half-spherical shells and a Pz26 piezoelectric ring clamped between the two shells. A simulation model of vibrational energy harvesting has been developed with electromechanical circuits for thickness and radial vibrational modes. This approach was validated by a finite element simulation. As a result, optimal power harvesting conditions and estimated harvested voltage were defined. A prototype of 2.2 cm in diameter was realized and characterized. Analysis in air environment reveals several structural resonance modes in the 20–80 kHz frequency range. The directivity patterns corresponding to these modes was obtained using laser Doppler vibrometry. The measurements for the underwater environment show that the structural resonance modes shift down in frequency to the 10–60 kHz range, and exhibiting low directivity dependence. Power harvesting performances was measured and quantified relative to acoustical pres- sure measurements using a hydrophone. The average conversion coefficient value was found to be in the order of 3 V/MPa. In broadband excitation mode, and for an acoustic pressure of 10 kPa, the amount of harvested power out of 5 main resonance modes is 3.3 μW.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2019

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more