Skip to main content
padlock icon - secure page this page is secure

Open Access A Model for Statistical Regularity Extraction from Dynamic Sounds

Download Article:
 Download
(PDF 439.1 kb)
 
To understand our surroundings, we effortlessly parse our sound environment into sound sources, extracting invariant information—or regularities—over time to build an internal representation of the world around us. Previous experimental work has shown the brain is sensitive to many types of regularities in sound, but theoretical models that capture underlying principles of regularity tracking across diverse sequence structures have been few and far between. Existing efforts often focus on sound patterns rather the stochastic nature of sequences. In the current study, we employ a perceptual model for regularity extraction based on a Bayesian framework that posits the brain collects statistical information over time. We show this model can be used to simulate various results from the literature with stimuli exhibiting a wide range of predictability. This model can provide a useful tool for both interpreting existing experimental results under a unified model and providing predictions for new ones using more complex stimuli.

14 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2019

This article was made available online on December 6, 2018 as a Fast Track article with title: "A Model for Statistical Regularity Extraction from Dynamic Sounds".

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more