Skip to main content
padlock icon - secure page this page is secure

Open Access Analysis of Level Dependence of 2f 1f 2 Component of Otoacoustic Emissions Using Nonlinear 2D Cochlear Model

Download Article:
(PDF 409.5 kb)

This article is Open Access under the terms of the Creative Commons CC BY licence.

A two-dimensional nonlinear cochlear model was used to study the dependence of the nonlinear-distortion component of cubic distortion product otoacoustic emissions (DPOAEs) on the levels of the primary tones: f 1 , f 2. DPOAE was simulated for a fixed frequency ratio between the primaries f 2 /f 1 = 1.2 and for two amplification gains at f 2 of 1.2, 2.4 and 4.8 kHz. The simulated optimal primary levels depend on frequency. Loss of the gain affects the optimal levels at the lowest intensities for which the DPOAE amplitude would fall below the noise level in real experiments. The nonlinear force acting in the model as a source of DPOAEs along the basilar membrane (BM) was calculated. Simulations showed that the nonlinear force spreads over a wide part of the length of BM, especially at large levels of the primaries and low f 2. Contributions along the source length may cancel each other out if the phase difference between them is half a cycle. This contributes to saturation of the DPOAE amplitude and causes notches.

© 2018 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the Creative Commons Attribution (CC BY 4.0) license (

16 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: September 1, 2018

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more