Skip to main content
padlock icon - secure page this page is secure

Numerical Simulation of Sound Propagation through the Can-Annular Combustor Exit

Buy Article:

$30.00 + tax (Refund Policy)

Thermo-acoustic instabilities in high power density gas turbine engines have to be predicted in order to avoid unexpected shutdown events. To predict these instabilities, the acoustics behavior of the combustion system needs to be analyzed. The work presented in this paper on combustor-turbine interaction is focused on reflection coefficient analysis. The study is based on a simplified two-dimensional (2D) geometry representing the vane section and another geometry corresponding to a real engine alike combustor/turbine design. Compressible Large Eddy Simulation (LES) is applied based on the open source Computational Fluid Dynamics package OpenFOAM. A forced response approach is used imposing a sound wave excitation at the inlet of the combustion chamber. The applied Non-Reflecting Boundary Conditions (NRBC) are verified for correct behavior and plausibility of the acoustic set up. Multi-harmonic excitation with small amplitudes is used to preserve linearity. The numerical results are compared to analytical formulae in order to test the validity of both approaches for the chosen geometries.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2018

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more