Skip to main content
padlock icon - secure page this page is secure

Modal Locking Between Vocal Fold Oscillations and Vocal Tract Acoustics

Buy Article:

$25.00 + tax (Refund Policy)

During voiced speech, vocal folds interact with the vocal tract acoustics. The resulting glottal source–resonator coupling has been observed using mathematical and physical models as well as in in vivo phonation. We propose a computational time-domain model of the full speech apparatus that contains a feedback mechanism from the vocal tract acoustics to the vocal fold oscillations. It is based on numerical solution of ordinary and partial differential equations defined on vocal tract geometries that have been obtained by magnetic resonance imaging. The model is used to simulate rising and falling pitch glides of [α, i] in the fundamental frequency (fo ) interval [145 Hz, 315 Hz]. The interval contains the first vocal tract resonance fR 1 and the first formant F 1 of [i] as well as the fractions of the first resonance fR 1 /5, fR 1 /4, and fR 1 /3 of [α]. The glide simulations reveal a locking pattern in the fo trajectory approximately at fR 1 of [i]. The resonance fractions of [α] produce perturbations in the pressure signal at the lips but no locking.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 March 2018

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more