Skip to main content
padlock icon - secure page this page is secure

Numerical Study on Acoustic Oscillations of 2D and 3D Flue Organ Pipe Like Instruments with Compressible LES

Buy Article:

$30.00 + tax (Refund Policy)

Acoustic oscillations of flue instruments are investigated numerically using compressible Large Eddy Simulation (LES). Investigating 2D and 3D models of flue instruments, we reproduce acoustic oscillations excited in the resonators as well as an important characteristic feature of flue instruments – the relation between the acoustic frequency and the jet velocity described by the semi-empirical theory developed by Cremer & Ising, Coltman and Fletcher et al. based on experimental results. Both 2D and 3D models exhibit almost the same oscillation frequency for a given jet velocity, but the acoustic oscillation as well as the jet motion is more stable in the 3D model than in the 2D model, due to less stability in 3D fluid of the rolled up eddies created by the collision of the jet with the edge, which largely disturb the jet motion and acoustic field in the 2D model. We also investigate the ratio of the amplitude of the acoustic flow through the mouth opening to the jet velocity, comparing with the experimental results and semi-empirical theory given by Hirschberg et al..
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2013

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more