Skip to main content
padlock icon - secure page this page is secure

Multilayer Piezoelectric Transducer Models Combined with Field II

Buy Article:

$30.00 + tax (Refund Policy)

One-dimensional and three-dimensional axisymmetric transducer model have been compared to determine their feasibility to predict the volt-to-surface impulse response of a circular Pz27 piezoceramic disc. The ceramic is assumed mounted with silver electrodes, bounded at the outer circular boundary with a polymer ring, and submerged into water. The transducer models are developed to account for any external electrical loading impedance in the driving circuit. The models are adapted to calculate the surface acceleration needed by the Field II software in predicting pressure pulses at any location in front of the transducer. Results show that both models predict the longitudinal resonances with consistency. The one-dimensional model is found to exhibit approximately 2.9 dB peak overshoot at the lowest longitudinal resonance frequencies prediction. These values are decreasing for higher longitudinal modes. If the three-dimensional model is restricted in its radial movement at the circular boundary both models exhibit identical results. The Field II predicted pressure pulses are found to have oscillating consistency with a 2.0 dB overshoot on the maximum amplitude using the one-dimensional compared to the three-dimensional model. This is with no electronic loading. With a 50 Ω loading an amplitude overshoot is found to be 1.5 dB.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2012

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more