Skip to main content
padlock icon - secure page this page is secure

An Intensity Method for Measuring Absorption Properties in situ

Buy Article:

$30.00 + tax (Refund Policy)

The well-known Kundt's tube and reverberant room method are often used for measurement of acoustic absorption properties of samples under laboratory conditions. Several in situ measurement methods exist, but most of them are limited in frequency range, require large samples and/or are vulnerable to background noise or reflections. The PU in situ impedance method [1, 2] has been used successfully on relatively small samples (> 0.1 m 2) in a broad frequency range (300 Hz – 10 kHz) under reverberant conditions (e.g. a car interior or a concert hall), see e.g. [3, 4, 5, 6, 7]. The small source-sample and probe-sample distance are the main reasons for the relative small sample size requirement and the low influence to background noise and reflections. However, in some cases the procedure shows artefacts because all the reflection at the top of the sample is considered, not taking into account wave propagation in the material. In this research the principle of measuring intensity instead of impedance is investigated. To eliminate near field effects an extrapolation technique is introduced that combines several measurements. The result is a technique to measure the absorption coefficient without knowledge of the material. The methods are examined theoretically and verified with experiments.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2012

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more