Skip to main content
padlock icon - secure page this page is secure

Calculating the Optimum Reverberation Time and Absorption Coefficient for Good Speech Intelligibility in Classroom Design Using U50

Buy Article:

$30.00 + tax (Refund Policy)

Acoustical comfort in general, and the quality of speech transmission from teacher to students in particular, are crucial in determining the quality of educational processes in schools. The acoustical treatment of interior surfaces, the sound insulation of surrounding constructions, the vocal capacity of the teacher, student activity noise, children's abilities to hear and concentrate and the educational circumstances, are among the many factors in the complex mechanism of speech understanding. Managing the rich variety of measures for optimising classroom acoustics demands a multidisciplinary approach. In this article we propose a predictive model for speech intelligibility, as expressed with the parameter U50, based on objective acoustical values, i.e. the reverberation time RT, signal-to-noise ratio SN, and the relative proportions of sound arriving early and late at the listener. The present article introduces the model and derives guidelines for architectural design. The model is illustrated using a typical Dutch classroom as an example. Architectural guidelines are derived for maximum RT values, and compared with existing recommendations. The possible additional need for minimum RT values is also investigated in relation to the phenomenon of 'overdamping' in classrooms.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more