Skip to main content
padlock icon - secure page this page is secure

A Model of Sound Localisation Applied to the Evaluation of Systems for Stereophony

Buy Article:

$30.00 + tax (Refund Policy)

In this paper, a model of human sound localisation is described, and its prediction is compared to the results of listening tests. The model takes binaural signals as the input, processing them in a series of signal processing modules, which simulate the peripheral, binaural and the central stages of spatial hearing. In particular, the central processor of the model considers the excitation-inhibition (EI) cell activity patterns as the internal representation of available cues, and the source location estimates are obtained by using a simple pattern-matching procedure. In the listening tests, stereophonic images were presented to the listener's front, where the stimulus was either broadband or 1/3 octave band noise at 7 centre frequencies from 0.5 kHz to 6 kHz. The subjective responses compared well to the model prediction across frequency except for some cases where the image location was overestimated. Also, the prediction for the localisation of broadband phantom images agreed well with the test results, where the model prediction was integrated across frequency according to a tentatively suggested weighting function. Although the neuroscientific background is weak for the model, the good agreement with the subjective responses suggests that the model is worth investigating further.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2008

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more