Skip to main content
padlock icon - secure page this page is secure

Acoustics of 90 degree sharp bends. Part I: Low-frequency acoustical response

Buy Article:

$30.00 + tax (Refund Policy)

The acoustical response of 90 degree sharp bends to acoustical perturbations in the absence of a main flow is considered. The aeroacoustical response of these bends is presented in part II [1]. The bends considered have a sharp 90 degree inner edge and have either a sharp or a rounded outer corner. They are placed in pipes with either a square cross-section (2D-bends) or a circular cross-section (3D-bends). The acoustical performance of a numerical method based on the non-linear Euler equations for two-dimensional inviscid and compressible flows is checked and its ability to predict the response of 3D-bends is investigated. The comparison between 2-D and 3-D data is made for equal dimensionless frequencies f/fc where f is the frequency of the acoustical perturbations and fc is the cut-off frequency of the bends. In the case of a bend with a sharp inner edge and a sharp outer corner, the 2-D numerical predictions agree with 2-D analytical data obtained from a mode expansion technique and with 2-D experimental data from literature and our own 3-D experimental results. In the case of a bend with a sharp inner edge and a rounded outer corner, the 2-D numerical simulations predict accurately the 2-D experimental data from literature. However, the 2-D numerical predictions do not agree with our 3-D experimental data. The acoustical response of 3D-bends appears to be independent of the shape of the outer corner. This behavior is quite unexpected.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2003

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more