Skip to main content
padlock icon - secure page this page is secure

A Symmetrical Two-Mass Vocal-Fold Model Coupled to Vocal Tract and Trachea, with Application to Prosthesis Design

Buy Article:

$30.00 + tax (Refund Policy)

We propose a two-mass model for the vocal folds. The aerodynamic force resulting from the air flow through the glottis is distributed over both masses, as opposed to some earlier models in which the force is allocated to the upstream mass only. This allows the choice of a symmetrical vocal-fold structure, with two identical mass-spring systems. The number of mechanical parameters is thus reduced. Their choice is inspired upon analysis of the eigenmodes of the actual vocal folds. The new aerodynamic force distribution allows acoustic feedback from vocal tract and trachea to be considered; sub- and supra-glottal systems are modelled as transmission lines. The flow model includes a simple flow-separation description.

Parameter values are based on physiological measurements and calculations reported in literature. However, as in any vocal-fold model it is inevitable that parameters also partly make up for simplifications in the model.

The model predictions are shown to compare well to in-vivo experimental data from literature concerning acoustic feedback. The two-mass model is applied to study the effect of size and position of a vocal-fold prosthesis on its performance.

We indicate how the model should be modified to provide order-of-magnitude estimates of the effect of flow inertia and fluid viscosity. The described improvement of the flow model is not of predictive value within the framework of the simplified mechanical model we propose.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 1998

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more