Skip to main content
padlock icon - secure page this page is secure

Testing the Nonlinearity of Piano Hammers Using Residual Shock Spectra

Buy Article:

$30.00 + tax (Refund Policy)

Force pulses and residual shock spectra of voiced, unvoiced (soft), and used (hard) piano hammers are compared. The peak frequency f max of the residual shock spectrum is related to the frequency range over which the hammer will be most effective in exciting string modes. Hammer speeds of 1 to 6 m/s, used in these experiments, span the normal dynamic range of the piano. Peak force is related to pulse duration and also to a nonlinearity exponent in the equation relating force to compression of the felt. For lower notes on the piano, f max is well above the fundamental frequency which helps to explain the dominance of higher partials in the bass notes. At the treble end, however, f max is comparable to the fundamental frequency, resulting in a strong fundamental and few partials in these notes on a piano. In addition to its usefulness in piano research, the residual shock spectrum could serve as a useful guide in the production and voicing of pianos.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: September 1, 1998

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more