Skip to main content
padlock icon - secure page this page is secure

Active Vibration Control in Finite Plates Using a Structural Power Flow Approach

Buy Article:

$30.00 + tax (Refund Policy)

This paper proposes a strategy for the active control of flexural vibration in plates. The proposed strategy consists of minimizing the power flow across a closed path encircling the perturbation and the control actuators. This approach is equivalent to active noise control based on the far-field power over a closed volume, where the disturbance source location is assumed to be known.

A frequency-domain adaptive control scheme has been developed aiming at the attenuation of steady-state, periodic vibrations. It is assumed that the location of the perturbation is known. The proposed strategy is investigated using a numerically simulated example consisting of a rectangular plate excited by a perturbation force. Some of the main issues concerning the implementation of a frequency-domain adaptive controller are investigated. The expression of the gradient of the power flowing in or out of a region encircling the perturbation force and the control actuators is derived. The convergence properties of the adaptive scheme are investigated using an off-line simulation in the frequency domain. It is shown that the power flow control can result in significant vibration reduction, which is the ultimate goal.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 1998

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more