Skip to main content
padlock icon - secure page this page is secure

On the Stability of Bowed String Motion

Buy Article:

$30.00 + tax (Refund Policy)

Linearised stability analysis is carried out for periodic solutions to a range of idealised theoretical models of the motion of a bowed string. For the simplest case, it is possible to obtain a quantitative value for the stability threshold by an approach based on spacetime diagrams, which has considerable physical and intuitive appeal. For the more general cases it is necessary to resort to computation, and two different state-vector formulations are given, each of which sheds light on aspects of the behaviour in certain models. The final formulation allows stability analysis to be carried through for the most general class of rounded-corner models. Representative results are given for the various aspects of each model, and their physical interpretation discussed.

Zusammenfassung

Es wird eine linearisierte Stabilitätsuntersuchung für periodische Lösungen verschiedener idealisierter theoretischer Modelle der Bewegung einer gestrichenen Saite ausgeführt. Im einfachsten Fall kann man einen quantitativen Wert für die Stabilitätsgrenze auf der Grundlage von Raum-Zeit-Diagrammen erhalten, was von beträchtlichen physikalischem und intuitivem Reiz ist. Für allgemeinere Fälle muß man Zuflucht zu Berechnungen suchen, und es werden zwei verschiedene Formulierungen mit Zustandsvektoren angegeben, von denen jede verschiedene Aspekte des Verhaltens in gewissen Modellen beleuchtet. Die endgültige Formulierung erlaubt die Durchführung einer Stabilitätsuntersuchung für die allgemeinste Klasse von Modellen der “abgerundeten Ecken”. Es warden repräsentative Ergebnisse für die verschiedenen Aspekte jedes Modells angegeben und ihre physikalische Interpretation wird diskutiert.

Sommaire

On procède à une analyse de la stabilité des solutions périodiques déduites de divers modèles théoriques du mouvement d'une corde frottée. Dans le cas le plus simple il est possible d'obtenir une estimation quantitative du seuil de stabilité, ä partir d'une analyse basée sur des diagrammes espace-temps qui est très attrayante du double point de vue physique et intuitif. Pour les cas plus généraux, on ne peut éviter le recours au calcul; et nous présentons deux formulations differentes de vecteur d'état, chacune apportant quelque éclaircissement sur le comportement de certains modéles. La formulation finale permet de mener à bien l'analyse de la stabilité pour la catégorie la plus générate des modèles à angles arrondis. On fournit des résulats représentatifs des divers aspects de chaque modèle, et on discute leur interprétation physique.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 1994

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more