Skip to main content
padlock icon - secure page this page is secure

General Integral Formalism for Acousto-Optic and Holographic Bragg Scattering for Arbitrary Profiles and Orientations

Buy Article:

$30.00 + tax (Refund Policy)

A general integral formalism based on multiple plane wave scattering theory for acousto-optic and holographic Bragg diffraction is developed. The formalism, which is a modification of earlier work, is applicable to dynamic gratings created by sound waves as well as static (holographic) gratings of any modulation strength over a wide range of Bragg angles. Numerical results for light beams incident on moving gratings are then obtained for three different beam profiles by employing this formalism. Straightforward extensions to the case of holographic gratings, with or without tilt, are also presented, and the results are compared, wherever feasible, with other known approaches.


Es wird ein allgemeiner Integralformalismus auf der Grundlage der Mehrfachstreuung ebener Wellen für die akusto-optische und holographische Bragg-Beugung entwickelt. Der Formalismus, der eine Modifikation einer früheren Untersuchung darstellt, kann auf dynamische Gitter angewandt werden, die entweder durch Schallwellen oder durch statische (holographische) Gitter beliebiger Modulationsstärke über einen weiten Bereich von Bragg-Winkeln erzeugt werden. Dieser Formalismus liefert numerische Ergebnisse für drei Strahlprofile von Lichtstrahlen, die auf bewegte Gitter auftreffen. Des weiteren werden einfache Erweiterungen auf den Fall holographischer Gitter mit oder ohne Neigung vorgestellt und die Ergebnisse werden, soweit möglich, mit denen anderer bekannter Lösungswege verglichen.


On a développé un formalisme intégral général, basé sur la théorie de la diffraction de séries d'ondes planes, pour la diffraction de Bragg acousto-optique et holographique. Ce formalisme, qui est une modification d'un travail antérieur, est applicable à des réseaux dynamiques créés par des ondes acoustiques aussi bien qu'à des réseaux statiques (holographiques) d'amplitude de modulation quelconque, sur un ensemble étendu d'angles de Bragg. En utilisant ce formalisme, on a obtenu des résultats numériques pour la diffraction de faisceaux de lumières par des réseaux mobiles, pour trois profils de faisceaux différents. On présente également des résultats d'application immédiate au cas des réseaux holographiques, avec ou sans inclinaison, et on les compare, là où c'est possible, à ceux d'autres approches connues.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: October 1, 1992

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more