Skip to main content
padlock icon - secure page this page is secure

Akustische Kavitation: ein typisches, nichtlineares dynamisches System

Buy Article:

$30.00 + tax (Refund Policy)

The methods of nonlinear dynamic systems theory that have been developed in the past few years are applied to acoustic cavitation. Acoustic cavitation noise is subject to phase space analysis, dimensional estimation and Lyapunov analysis. Fractal noise at-tractors with a dimension between two and three, and with one positive Lyapunov exponent in the Lya-punov spectrum are found. The investigation of non-linear bubble oscillations and a large class of non-linear oscillators shows that nonlinear dynamical systems share many properties, and that acoustic cav-itation can be considered as a typical nonlinear dy-namical system.


Die akustische Kavitation wird mit den in den letzten Jahren entwickelten Methoden zur Beschreibung der Ei-genschaften nichtlinearer dynamischer Systeme unter-sucht. Insbesondere wird das Kavitationsgerausch einer Phasenraum-, Dimensions- und Lyapunovanalyse unter-zogen. Es werden fraktale Geräuschattraktoren mit einer Dimension zwischen zwei und drei und ein positiver Ex-ponent im Lyapunov-Spektrum gefunden. Die Untersu-chung nichtlinearer Blasenschwingungen und einer gro-ßen Klasse nichtlinearer Oszillatoren zeigt, daß nichtli-neare Systeme viele Eigenschaften gemeinsam haben und die akustische Kavitation als ein typisches, nichtl-ineares dynamisches System aufgefaßt werden kann.


On étudie la cavitation acoustique au moyen des métho-des qui ont été mises au point au cours des dernières années pour decrire les propriétés des systèmes dyna-miques non-linéaires. En particulier on a soumis le bruit de cavitation à une analyse polyvalente dimensionnelle, en espace des phases et à la Lyapunov. Ainsi on a pu mettre en évidence des attracteurs fractals pour le bruit de cavitation avec une dimension comprise entre deux et trois et un exposant positif dans le spectre de Lyapunov. L'investigation comparative des oscillations non-linéaires des bulles de cavitation et d'une catégorie étendue d'oscil-lateurs non-linéaires montre que les systèmes non-linéaires ont en commun de nombreuses propriétés et que, parmi eux, la cavitation acoustique peut, à bon droit, être pré-sentée comme un exemple typique de système dynamique non-linéaire.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 1991

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more