Skip to main content
padlock icon - secure page this page is secure

Perception of the Simple Difference Tone (f 2f 1) at Low Frequencies: A Second Look

Buy Article:

$30.00 + tax (Refund Policy)

The present study examined the dependence of difference tone level [L(f 2f 1] on the frequency separation of the two-tone input (f 2/f 1, f 2 > f 1). An apparent discrepancy between results obtained at low and high frequencies is resolved to a large degree by a reanalysis of earlier data obtained at low frequencies. Support for the conclusions of the reanalysis is provided by some additional data obtained in this study for f 1 = 425 Hz. Slope estimates for the function relating L(f 2f 1) to f 2/f 1 approximate —45 dB/octave. The dependence of L(f 2f 1) on L 1 = L 2 at 425 Hz may be characterized by a linear function having a slope < 1.0 dB/dB.


In der vorliegenden Arbeit wird die Abhängigkeit des Differenztonpegels L(f 2f 1) vom Frequenzabstand des Zwei-Ton-Komplexes (f 2/f 1, f 2> f 1) untersucht. Offensichtliche Abweichungen zwischen den für tiefe und für hohe Frequenzen ermittelten Ergebnissen können zu einem großen Teil durch eine neue Analyse der früher für tiefe Frequenzen erhaltenen Daten erklärt werden. Die Ergebnisse dieser Neuanalyse werden unterstützt durch die in der vorliegenden Untersuchung erhaltenen Zusatzdaten für f 1 = 425 Hz. Der Anstieg von L(f 2f 1) als Funktion von f 2/f 1 beträgt etwa —45 dB/Oktave. Die Abhängigkeit des Pegels L(f 2f 1) von L 1 = L bei 425 Hz kann durch eine lineare Funktion mit einer Steigung < 1 dB/dB dargestellt werden.


On étudie la variation du niveau de perception L(f 2f 1) du son différentiel simple f 2f 1 en fonction du rapport des deux sons élémentaires f 2/f 1 (f 2 > f 1). Un désaccord apparaîssait entre les résultats obtenus aux fréquences basses et ceux obtenus aux fréquences aiguës; il a pu être expliqué en grande partie grâce à une nouvelle analyse de résultats obtenus précédemment aux fréquences basses. De nouvelles preuves sont apportées par des résultats supplémentaires présentés ici et obtenus avee f 1 = 425 Hz. La fonction reliant L(f 2f 1) à f 2/f 1 a une pente d'environ — 45 dB/octave; à 425 Hz la fonction reliant L(f 2f 1) à L 1 = L 2 devient linéaire et a une ponde inférieure à 1 dB/dB.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 1980

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Online User License
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more