Skip to main content

Free Content A New Quantitative Method to Measure Activity of Ice Structuring Proteins Using Differential Scanning Calorimetry

There are very few quantitative assays to measure the activity of antifreeze proteins (AFPs, or Ice Structuring Proteins, ISPs) and these can be prone to various inaccuracies and inconsistencies. Some methods rely only on unassisted visual assessment. When microscopy is used to measure ice crystal size, it is critical that standardized procedures be adopted, especially when image analysis software is used to quantify sizes. Differential Scanning Calorimetry (DSC) has been used to measure the thermal hysteresis activity (TH) of AFPs. In this study, DSC was used isothermally to measure enthalpic changes associated with structural rearrangements as a function of time. Differences in slopes of isothermal heat flow vs. time between winter wheat ISP or AFP type I containing samples, and those without ISP or AFP type I were demonstrated. ISP or AFP type I containing samples had significantly higher slopes compared to those without ISP or AFP type I. Samples with higher concentration of ISP or AFP type I showed higher slope values during the first hour and took up to 3 hr to attain equilibrium. Differences were attributed to activity of the proteins at the ice interface. Proteinaceous activity of ISPs or AFP type I was confirmed by loss of activity after treatment with protease.

Keywords: ANTIFREEZE PROTEINS (AFP) ACTIVITY; DIFFERENTIAL SCANNING CALORIMETRY (DSC); ICE STRUCTURING PROTEINS (ISPS) ACTIVITY; RECRYSTALLIZATION INHIBITION (RI) ACTIVITY; THERMAL HYSTERESIS (TH) ACTIVITY

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • CryoLetters is a bimonthly international journal for low temperature sciences, including cryobiology, cryopreservation or vitrification of cells and tissues, chemical and physical aspects of freezing and drying, and studies involving ecology of cold environments, and cold adaptation

    The journal publishes original research reports, authoritative reviews, technical developments and commissioned book reviews of studies of the effects produced by low temperatures on a wide variety of scientific and technical processes, or those involving low temperature techniques in the investigation of physical, chemical, biological and ecological problems.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content