Skip to main content
padlock icon - secure page this page is secure

Free Content Cryoprotection in plant tissues related to reduced volume expansion of cryoprotectant solution

Download Article:
 Download
(PDF 449.3 kb)
 
To clarify the mechanism of reduced volume expansion-related cryoprotection changes in solution volume during freezing using several types of cryoprotectant were investigated. The effect of each cryoprotectant solution on the survival of asparagus nodal segments cooled slowly (0.5°C/min) to -40°C was also examined. The ratio of the volume at -40°C to the volume at +20°C was used as an index for expansion, calculated as a ratio of the density at +20°C to the density at -40°C. Distilled, deionized water showed the largest volume change at a ratio of 1.094. The ratio gradually decreased with an increase in the molar concentration of cryoprotectant, with the magnitude of the change dependent on the nature of the cryoprotectant. Raffinose was the most effective in reducing volume expansion when compared with other cryoprotectants at a same concentration. Raffinose exhibited greatest cryoprotection in asparagus tissue at 0.6 M where the solution became saturated. Dimethyl sulfoxide (Me2SO) at 1.69 M had the largest effect on cryoprotecting asparagus tissue. Furthermore, Me2SO was also the most effective in reducing volume expansion among the group of cryoprotectants permeable to the plasma membrane. It is concluded that cryoprotection in tissues was closely related to reduced volume expansion especially at low concentration (≤1.0 M). Cryoprotectants of impermeable sugar group lost their cryoprotective effect at >1.0 M, which may due to severe dehydration and cell damage occurred in hypertonic solution. Useful cryoprotectants should be furnished with high ability of reducing volume expansion during freezing as well as low toxicity and high permeability for cells.

18 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ASPARAGUS OFFICINALIS L; CRYOPRESERVATION; FREEZING INJURY; ICE FORMATION; SLOW FREEZING

Document Type: Regular Paper

Publication date: May 1, 2005

More about this publication?
  • CryoLetters is a bimonthly international journal for low temperature sciences, including cryobiology, cryopreservation or vitrification of cells and tissues, chemical and physical aspects of freezing and drying, and studies involving ecology of cold environments, and cold adaptation

    The journal publishes original research reports, authoritative reviews, technical developments and commissioned book reviews of studies of the effects produced by low temperatures on a wide variety of scientific and technical processes, or those involving low temperature techniques in the investigation of physical, chemical, biological and ecological problems.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more