Skip to main content
padlock icon - secure page this page is secure

Free Content Experimental Determination of Human Erythrocyte Membrane Permeability Coefficients for a Series of Amides

Download Article:
(PDF 121.4 kb)
Erythrocyte membrane permeability coefficients have been determined for a series of amides by a method based on the physical and mathematical modelling of hypotonic haemolysis process. The results show that penetration of the substances occurs by two alternative ways – through aqueous pores formed by proteins and by the direct dissolving of the molecules in membrane lipids. This conclusion can be confirmed by the correlation analysis between permeability coefficients of native erythrocytes and those pre-incubated with the monosodium salt of p-chloromercuribenzenesulfonic acid (pCMBS), and the partition coefficients of the substances in hydrophilic-hydrophobic phases. Penetration of substances through hydrophilic channels is limited by the sterical factor and diameter in particular. Permeability coefficients for erythrocytes pre-incubated with pCMBS increase in an accordance with the rise of the partition coefficients with correlation coefficient of 0.94, thereby indicating a lipid route of permeation of molecules through erythrocyte membranes.

13 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Regular Paper

Publication date: January 1, 2005

More about this publication?
  • CryoLetters is a bimonthly international journal for low temperature sciences, including cryobiology, cryopreservation or vitrification of cells and tissues, chemical and physical aspects of freezing and drying, and studies involving ecology of cold environments, and cold adaptation

    The journal publishes original research reports, authoritative reviews, technical developments and commissioned book reviews of studies of the effects produced by low temperatures on a wide variety of scientific and technical processes, or those involving low temperature techniques in the investigation of physical, chemical, biological and ecological problems.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more