Skip to main content
padlock icon - secure page this page is secure

Free Content Effect of Membrane Lipid Order on the Degree of Freezing Damage of Thylakoid Membranes

Download Article:
(PDF 222.4 kb)
The extent of freezing damage of the photosynthetic apparatus of isolated thylakoid membranes, control and after modification of their membrane fatty acid acyl chain order by cholesterol and benzyl alcohol, was studied. The photochemical activity of photosystems I and II and the energy transfer between the main pigment protein complexes had been determined. Cholesterol-treated membranes are less susceptible to freezing damage, expressed by minor changes of the photochemical activity and retaining the 77K fluorescent characteristics. Benzyl alcohol incorporation enhanced the degree of freezing damage. The photochemical activity of both photosystems was severely decreased (by 80%) and considerable changes in the fluorescent properties were observed, mainly in the pigment pool associated with Photosystem I. The effects of different freezing media (artificial stroma medium, trehalose, glycine betaine and NaCl) were compared in respect to the maintaining of the activity of photosynthetic apparatus.

18 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Regular Paper

Publication date: June 1, 2004

More about this publication?
  • CryoLetters is a bimonthly international journal for low temperature sciences, including cryobiology, cryopreservation or vitrification of cells and tissues, chemical and physical aspects of freezing and drying, and studies involving ecology of cold environments, and cold adaptation

    The journal publishes original research reports, authoritative reviews, technical developments and commissioned book reviews of studies of the effects produced by low temperatures on a wide variety of scientific and technical processes, or those involving low temperature techniques in the investigation of physical, chemical, biological and ecological problems.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more