Skip to main content
padlock icon - secure page this page is secure

Open Access Analysis of Naturally Occurring Resistance-Associated Variants to NS3/4A Protein Inhibitors, NS5A Protein Inhibitors, and NS5B Polymerase Inhibitors in Patients With Chronic Hepatitis C

Download Article:
 Download
(HTML 45.7 kb)
 
or
 Download
(PDF 77 kb)
 
The first NS3/4A hepatitis C virus (HCV) protease inhibitors telaprevir and boceprevir were approved in 2011, and both NS5A and NS5B polymerase inhibitors were launched. Recently, direct-acting antivirals (DAAs) have had a major impact on patients infected with HCV. HCV DAAs are highly effective antivirals with fewer side effects. DAAs have been developed for the treatment of HCV infection in combination with PEG-IFN-α/RBV as well as in IFN-free regimens. However, some drug resistance mutations occur when a single oral DAA is used for treatment, which indicates that there is a low-frequency drug resistance mutation in HCV patients before the application of antiviral drugs. Our research showed that natural resistance to HCV DAAs was found in treatment-naive CHC patients and that the drug resistance mutation rates differ in various HCV genotypes. Many challenges posed by natural resistance should be considered in the context of DAA therapies.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Infectious liver diseases; Liver diseases; Viral hepatitis

Document Type: Research Article

Affiliations: Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China

Publication date: March 21, 2018

This article was made available online on December 8, 2017 as a Fast Track article with title: "Analysis of naturally occurring resistance-associated variants to NS3/4A protein inhibitors, NS5A protein inhibitors and NS5B polymerase inhibitors in patients with chronic hepatitis C".

More about this publication?
  • Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more