Skip to main content
padlock icon - secure page this page is secure

Open Access Knockdown of miR-23, miR-27, and miR-24 Alters Fetal Liver Development and Blocks Fibrosis in Mice

Download Article:
(HTML 75.2 kb)
(PDF 2,888.8 kb)
MicroRNAs (miRNAs) regulate cell fate selection and cellular differentiation. miRNAs of the miR23b polycistron (miR-23b, miR-27b, and miR-24) target components of the TGF-β signaling pathway and affect murine bile ductular and hepatocyte cell fate selection in vitro. Here we show that miR-23b polycistron miRNAs directly target murine Smad4, which is required for TGF-β signaling. Injection of antagomirs against these miRNAs directly into E16.5 murine fetuses caused increased cytokeratin expression in sinusoids and primitive ductular elements throughout the parenchyma of newborn mice. Similar antagomir injection in newborn mice increased bile ductular differentiation in the liver periphery and reduced hepatocyte proliferation. Antagomir injection in newborn Alb/TGF-β1 transgenic mice that develop fibrosis inhibited the development of fibrosis, and injection of older mice caused the resolution of existing fibrosis. Furthermore, murine stellate cell activation, including ColA1 and ACTA2 expression, is regulated by miR-23b cluster miRNAs. In summary, knockdown of miR-23b cluster miRNAs in fetal and newborn liver promotes bile duct differentiation and can block or revert TGF-β-induced liver fibrosis that is dependent on stellate cell activation. These data may find practical application in the highly needed development of therapies for the treatment of fibrosis.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Alb/TGF-β1; Cell fate; Differentiation; Hepatic progenitors; Liver; Liver fibrosis; MicroRNA; miR-23; miR-24; miR-27

Document Type: Research Article

Affiliations: Division of Gastroenterology and Liver Disease, Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA

Publication date: February 10, 2017

This article was made available online on November 23, 2016 as a Fast Track article with title: "Knockdown of miR-23, miR-27 and miR-24 Alters Fetal Liver Development and Blocks Fibrosis in Mice".

More about this publication?
  • Gene Expression The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.

    From Volume 16, Gene Expression The Journal of Liver Research is Open Access under the terms of the Creative Commons CC BY-NC-ND license.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more