Skip to main content
padlock icon - secure page this page is secure

Temporal Gene Expression Analysis of Human Coronary Artery Endothelial Cells Treated With Simvastatin

Buy Article:

$46.00 + tax (Refund Policy)

Increasing evidence indicates that the beneficial “pleiotropic” effects of statins on clinical events involve nonlipid mechanisms including the modification of blood vessel endothelial cell function. However, the involved molecular events and pathways are not completely understood. In the present study, Affymetrix microarrays were used to monitor the temporal gene expression of human coronary artery endothelial cells (HCAEC) treated with simvastatin (Sim) to gain insight into statins' direct effects on the endothelial function. We isolated and labeled mRNA from HCAEC treated with Sim for 0, 3, 6, 12, 24, and 48 h and hybridized these samples to Affymetrix GeneChip HG-U95Av2 to analyze the temporal gene expression profile. Out of 12,625 genes present on the HG-U95Av2 GeneChip, expression of 5,432 genes was detected. There were 1,475 of 5,432 genes that displayed the differential expression compared to baseline (0 h). Fifty-four genes were upregulated (≤twofold) while 61 genes were downregulated ( ≥ twofold) at 24‐48 h after the Sim treatment. Many new target genes and pathways modulated by Sim were uncovered. This study indicates that many aspects of the pleiotropic effect of Sim on the endothelial cell function can be mediated by transcriptional control. Physiological function of 22% of 115 differentially expressed genes in Sim-treated HCAEC are currently unknown. These newly identified genes could be useful for new mechanistic study and new therapeutic modalities. Expressions of 13 out of 18 genes (>70%) in the cell cycle/proliferation control process were significantly inhibited by the Sim treatment. CDC25B and ITGB4 gene expressions were validated by RT-PCR and Western blotting. Sim's inhibitory effect of on HCAEC growth was confirmed by the measurement of [3H]thymidine incorporation into the DNA synthesis. Further in-depth analysis of this effect may shed light on molecular mechanisms of Sim's beneficial inhibition of neointima formation in the atherosclerotic artery stenosis.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Coronary artery endothelial cells; Gene expression; Microarray; Simvastatin

Document Type: Research Article

Publication date: April 1, 2008

More about this publication?
  • Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more