Skip to main content
padlock icon - secure page this page is secure

Genetic Analysis of the Basis of Translation in the -1 Frame of an Unusual Non-ORF Sequence Isolated From Phage Display

Buy Article:

$46.00 + tax (Refund Policy)

An unusual peptide-encoding sequence, called H10, and several derivatives of this sequence were previously isolated from a random peptide library screened by phage display during drug discovery protocols. The H10 family of sequences had the unusual property of being expressed despite the absence of an open reading frame. When these sequences were fused to a reporter lacZ gene in all three frames, β-galactosidase was expressed not only from the parental non-open reading frame, consistent with the original isolations, but also from the frame -1 to the parental. This unexpected translation in a second reading frame could result from either a recoding event or from an internal translation initiation event. In order to elucidate which type of event, a genetic approach was selected to eliminate a potential downstream initiator site within the H10 sequence. This report provides strong evidence that translation in the -1 frame in this family of sequences is indeed originating from a downstream translation initiation event. Unexpectedly, the mutation eliminating the downstream initiation event in the -1 frame simultaneously elevated expression in the original non-open reading frame.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: E. coli protein synthesis Recoding Readthrough of

Document Type: Research Article

Affiliations: Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103

Publication date: March 1, 2002

More about this publication?
  • Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more