Skip to main content
padlock icon - secure page this page is secure

Sequential Steps in Tat Trans-Activation of HIV-1 Mediated Through Cellular DNA, RNA, and Protein Binding Factors

Buy Article:

$46.00 + tax (Refund Policy)

The regulation of HIV expression is controlled by the activity of the Long Terminal Repeat (LTR). Trans-activation by the virally encoded Tat protein is one of the main mechanisms of LTR activation. Tat binds to its target, TAR RNA, and cellular proteins that bind the LTR, Tat, or TAR RNA are important components of the Trans-activation process. We will review the factors that have been characterized for a possible involvement in this mechanism. Whereas LTR binding proteins consist of Spl and TBP, a large number of factors that bind TAR RNA have been isolated. We have previously cloned two of them by RNA probe recognition: TRBP and La. We have shown that the in vitro and in vivo binding of TRBP to TAR RNA correlates with a constant expression of the protein during HIV-1 infection. Several proteins that interact with Tat have mainly positive, but some negative, effects on Trans-activation. Genetic studies have defined that human chromosome 12 encodes a protein that will allow Trans-activation in rodent cells. The binding and the functional data about these proteins suggest sequential steps for the Tat transactivation mechanism. Each of these intracellular molecular events could be the target for molecular intervention against the virus.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cellular factors; HIV; RNA binding proteins; Tat; Trans-activation

Document Type: Research Article

Publication date: January 1, 1996

More about this publication?
  • Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more