Skip to main content
padlock icon - secure page this page is secure

Yeast RNA polymerase II subunit RPB11 is related to a subunit shared by RNA polymerase I and III

Buy Article:

$46.00 + tax (Refund Policy)

The characterization of RNA polymerase subunit genes has revealed that some subunits are shared by the three nuclear enzymes, some are homologous, and some are unique to RNA polymerases I, II, or III. We report here the isolation and characterization of the yeast RNA polymerase II subunit RPB11, which is encoded by a single copy RPB11 gene located directly upstream of the topoisomerase I gene, TOPI, on chromosome XV. The sequence of the gene predicts an RPB11 subunit of 120 amino acids (13,600 daltons), only two amino acids shorter than the RPB9 polypeptide, that co-migrates with RPB11 under most SDS-PAGE conditions. RPB11 was found to be an essential gene that encodes a protein closely related to an essential subunit shared by RNA polymerases I and III, AC19. RPB11 contains a 19 amino acid segment found in three other yeast RNA polymerase subunits and the bacterial RNA polymerase subunit a. Some mutations that affect RNA polymerase assembly map within this segment, suggesting that this region may play a role in subunit interactions. As the isolation of RPB11 completes the isolation of known yeast RNA polymerase II subunit genes, we briefly summarize the salient features of these twelve genes and the polypeptides that they encode.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 1993

More about this publication?
  • Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more