Skip to main content
padlock icon - secure page this page is secure

Mineralogical and Geochemical Characteristics and Genesis of the Güzelyurt Alunite-Bearing Kaolinite Deposit Within the Late Miocene Gördeles Ignimbrite, Central Anatolia, Turkey

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The Güzelyurt kaolinite deposit is an important source of raw material for the ceramics industry in Turkey. No detailed mineralogical or geochemical characterizations of this deposit have been undertaken previously and these were the goals of the present study. The Güzelyurt alunite-bearing kaolinite occurs along a fault zone in the Late Miocene Gördeles ignimbrite, which consists of dacitic and andesitic tuffs. Horizontal and vertical mineralogical zonations with gradual transitions were observed within the alteration zone. The inner kaolinite, alunite, and 7 Å halloysite zones progress horizontally outward to a smectite zone; and native sulfur- and cinnabar-bearing alunite with 7 Å halloysite and porous silica zones increase as one progresses up through the profile. Fe-(oxyhydr)oxide phases associated with native sulfur and cinnabar demonstrate that multiple hydrothermal-alteration processes resulted in kaolinization and alunitization of the deposit. The kaolinization of feldspar, Fe-(oxyhydr)oxidation of hornblende and mica, the presence of kaolinite as stacked and, locally, book-like forms, and of 7 Å halloysite tubes, and smectite flakes as a blanket on altered volcanic relicts indicate an authigenic origin for this deposit. The leaching of Si + Mg + K and Ba + Rb, the retention of Sr, the enrichment of light rare earth elements relative to the heavy rare earth elements, and the negative Eu anomalies suggest that fractionation of plagioclase and hornblende occurred within the volcanics. The oxygen- and hydrogen-isotopic values of the kaolinite, 7 Å halloysite, smectite, and smectite + kaolinite fractions reflect a steam-heated environment at temperatures in excess of 100°C. An increase in the δD and δ18O values of 7 Å halloysite relative to kaolinite suggests its formation under steam-heated magmatic water, the mixing of steam and meteoric water near the surface, and evaporation. The oxygen- and sulfur-isotopic compositions of alunite suggest the direct influence of steam-derived sulfur. The Güzelyurt alunite-bearing kaolinite deposit is inferred to have formed after an increase in the (Al±Fe)/Si ratio and the leaching of alkali elements, which are driven by the sulfur-bearing low-temperature hydrothermal alteration of feldspar, hornblende, and volcanic glass under acidic conditions within the Neogene dacitic and andesitic tuffs.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics


Document Type: Research Article

Publication date: December 1, 2014

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more