Skip to main content
padlock icon - secure page this page is secure

Hydro-Mechanical and Chemical-Mineralogical Analyses of the Bentonite Buffer from a Full-Scale Field Experiment Simulating a High-Level Waste Repository


The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The effect of exposure to repository-like conditions on compacted Wyoming bentonite was determined by comparing the hydraulic, mechanical, and mineralogical properties of samples from the bentonite buffer of the Canister Retrieval Test (CRT) with those of reference material. The CRT, located at the Swedish Äspö Hard Rock Laboratory (HRL), was a full-scale field experiment simulating conditions relevant for the Swedish, so called KBS-3, concept for disposal of high-level radioactive waste in crystalline host rock. The compacted bentonite, surrounding a copper canister equipped with heaters, had been subjected to heating at temperatures up to 95°C and hydration by natural Na-Ca-Cl type groundwater for almost 5 y at the time of retrieval.

Under the thermal and hydration gradients that prevailed during the test, sulfate in the bentonite was redistributed and accumulated as anhydrite close to the canister. The major change in the exchangeable cation pool was a loss in Mg in the outer parts of the blocks, suggesting replacement of Mg mainly by Ca along with the hydration with groundwater. Close to the Cu canister, small amounts of Cu were incorporated into the bentonite. A reduction of strain at failure was observed in the innermost part of the bentonite buffer, but no influence was noted on the shear strength. No change in swelling pressure was observed, while a modest decrease in hydraulic conductivity was found for the samples with the highest densities. No coupling was found between these changes in the hydro-mechanical properties and the montmorillonite – the X-ray diffraction characteristics, the cation exchange properties, and the average crystal chemistry of the Na-converted <1 μm fractions provided no evidence of any chemical/structural changes in the montmorillonite after the 5 y hydrothermal test.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: December 1, 2011

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more