Skip to main content
padlock icon - secure page this page is secure

Removal of Hg(II) from an Aqueous Medium by Adsorption Onto Natural and Alkyl-Amine Modified Brazilian Bentonite

Notice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Mercury ion removal from waste-waters has been the subject of extensive research. The aim of the present investigation was to report the incorporation of the n-alkylamine molecules onto a bentonite surface and the capacities of these new chelating moieties on this modified bentonite surface for mercury removal from water. Bentonite collected from the Amazon region, Brazil, was used in an intercalation process with polar n-alkylamine molecules of general formula H3C(CH2) n -NH2 (n = 1 to 4) in 1,2-dichloroethane. The natural and modified bentonite samples were characterized by elemental analysis, X-ray diffraction, helium picnometry, mercury porosimetry, and 29Si, 27Al, and 13C nuclear magnetic resonance spectroscopy. Because of the increasing size of the molecules attached to the pendant chains, the metal-adsorption capability of the final chelating materials was measured in each case. The adsorption of Hg(II) on natural and modified bentonites was determined under different conditions. The effects of concentration of Hg(II), contact time, and pH were investigated; batch and dynamic adsorption experiments of Hg(II) were conducted on bentonite samples under various conditions. The ability of these materials to remove Hg(II) from aqueous solution was assessed by means of a series of adsorption isotherms at room temperature and pH 4.0. In order to evaluate the bentonite samples as adsorbents in a dynamic system, a glass column was filled with clay samples (1.0 g each) and fed with 1.8 × 10–4 mol dm–3 Hg(II) at pH 4.0. The energetic effects caused by adsorption of metal cations were determined by means of calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such Hg(II) nitrogen interactions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ADSORPTION; BENTONITE; CALORIMETRY; DYNAMIC ADSORPTION PROCEDURES; MERCURY

Document Type: Research Article

Publication date: December 1, 2011

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]du

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more