Skip to main content
padlock icon - secure page this page is secure

Characterization of expandable clay minerals in Lake Baikal sediments by thermal dehydration and cation exchange

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

The sedimentary series from Academician Ridge, Lake Baikal, eastern Siberia, was examined using cation exchange capacity (CEC) to estimate the amount of expandable clay minerals (ECM) and high-temperature X-ray diffraction (HT-XRD) to determine their basic classification. The comparison of the magnetic susceptibility (MS) at sub-millennial resolution and the 18O record of a reference Atlantic core (ODP 980) was used to create an age model. The most closely studied part of the series covered the major part of the last glacial cycle (120−20 ky BP). The HT-XRD analysis is based on monitoring the course of ECM dehydration with 5°C steps between 25 and 250°C and enabled us to improve the discrimination between ECM, chlorite and micas. The CEC obtained at millennial resolution showed that the neoformation of ECM in warmer periods of the last interglacial was either insignificant or fully compensated by their dissolution or dilution. The CEC record was correlated with the main climatic stages in the period studied. Both MS and CEC records reflected the environmental changes at about millennial resolution, including climatic instabilities between 117 and 73 ky BP (late MIS5).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CATION EXCHANGE CAPACITY; LAKE BAIKAL; LAKE SEDIMENTS; PALEOCLIMATE; RUSSIA; THERMAL DEHYDRATION; XRD

Document Type: Research Article

Publication date: August 1, 2005

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more