Skip to main content
padlock icon - secure page this page is secure

Reaction of phosphate compounds with a high-silica allophane

Buy Article:

$25.00 + tax (Refund Policy)

The loading of various phosphates on the surfaces of nanoparticles of allophane (1–2SiO2·Al2O3·5–6H2O) was investigated. The allophane used was a high-silica type with a Si/Al ratio of 0.85. The phosphate-sorption isotherm was measured using (NH4)2HPO4 solution, which showed the highest phosphate sorption of the seven phosphates examined. This sorption isotherm was in better agreement with the Langmuir equation than the Freundlich equation. The resulting maximum sorption capacity was 4.87 mmol/g and the Langmuir constant was 0.0033 L/mmol. The sorption energy (ΔG) calculated from the Langmuir constant was –2.96 kJ/mol. The amount of loaded phosphate varied greatly according to the phosphate used, being greater for orthophosphates than for polyphosphates. The amount of loaded phosphate also depended on the cation present, in the order Ca-Na-NH4-phosphate. The Si/Al ratios of the samples were decreased by orthophosphate loading due to the partial replacement of SiO4 by PO4tetrahedra, but this effect was offset by the partial dissolution of the allophane by polyphosphate loading. The 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of all the phosphate-loaded samples showed an increase of a peak at −90 ppm (the Q1Q3 polymerized tetrahedral unit) and the decrease of a peak at −78 ppm peak (the Q° monomeric tetrahedral unit). The 31P MAS NMR spectra showed peaks at ∼−10 ppm, assigned to Q2units corresponding to polymerized tetrahedra which consisted of loaded PO4 together with Si(Al)O4. The structure changes produced in allophane by phosphate loading are discussed in light of these data.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ALLOPHANE; PHOSPHATE-LOADING; SORPTION PROPERTIES; STRUCTURE CHANGE

Document Type: Research Article

Publication date: August 1, 2005

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more