Skip to main content
padlock icon - secure page this page is secure

Thermal characterization of surfactant-modified montmorillonites

Buy Article:

$20.00 + tax (Refund Policy)

The thermal stability of surfactant-modified clays plays a key role in the synthesis and processing of organoclay-based nanocomposites. Differential thermal analysis (DTA), thermogravimetric measurement and differential scanning calorimetry (DSC) were used in this study to characterize the thermal stability of hexadecyltrimethylammonium bromide-modified montmorillonites prepared at different surfactant concentrations. Analysis by DSC shows that the molecular environment of the surfactant within the montmorillonite galleries is different from that in the bulk state. The endothermic peak at 70–100°C in the DTA curves of the modified montmorillonites is attributed to both the surfactant phase transformation and the loss of free and interlayer water. With an increase of surfactant-packing density, the amount of water residing in the modified montmorillonite decreases gradually, reflecting the improvement of the hydrophobic property for the organoclay. However, the increase in the surfactant packing density within the galleries leads to a decrease in the thermal stability of the organoclays.

With an increase of initial surfactant concentration for the preparation of organoclays, the surfactant-packing density increases gradually to a 'saturated' state. It was found that the cationic surfactant was introduced into the montmorillonite interlayer not only by cation exchange but also by physical adsorption.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: DSC; DTA; SURFACTANT-MODIFIED MONTMORILLONITE; TG; THERMAL STABILITY

Document Type: Research Article

Publication date: 01 June 2005

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more