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SUMMARY

Technology-driven advances in the gathering, processing and delivery of big data are making it easier to monitor forests and make informed 
decisions over their use and management. This paper first describes how innovations in remote sensing and cloud computing are enabling 
generation of geospatial data more often, at lower cost and in more user-friendly formats. Second, it describes the evolution of systems and 
technologies to trace forest products, and agricultural commodities linked to deforestation, from source to final use. Third, it reviews the poten-
tial for emerging data mining technologies such as natural language processing, web scraping and computer vision to support forest policy 
analysis and augment geospatial data gathered through remote sensing. The paper gives examples of how these technologies are being used and 
may be used in the future to monitor and respond to deforestation, fire and natural disasters, improve governance by enabling faster and more 
comprehensive analysis of social networks, policies and regulations, and increase traceability and transparency within supply chains.
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L’essor des grandes données et des technologies les soutenant dans la surveillance des forêts 
du monde

R. TAYLOR, C. DAVIS, J. BRANDT, M. PARKER, T. STÄUBLE et Z. SAID

Les avancées poussées par la technologie dans le rassemblement, le traitement et la distribution des grandes données rendent la surveillance 
des forêts plus aisée, tout comme les prises de décision averties sur leur utilisation et leur gestion. Ce papier décrit tout d’abord comment les 
innovations dans le sensoriel à distance et dans l’informatique en nuage aident à créer des données géo-spatiales plus fréquemment, à moindre 
coût et dans des formats plus confortables à l’usage. De plus, il décrit l’évolution des systèmes et des technologies pouvant tracer les produits 
forestiers et les matières premières agricoles associées à la déforestation, de la source à leur utilisation finale. Il analyse ensuite le potentiel que 
détiennent les technologies émergeantes prospectrices de données telles que le traitement du langage naturel, le grattage web et la vision par 
ordinateur pour soutenir l’analyse de la politique forestière et augmenter les données géo-spatiales recueillies par télédétection. Ce papier 
donne des exemples de la manière dont ces technologies sont utilisées et comment elles pourraient être utilisées dans le futur pour gérer et 
répondre à la déforestation, les incendies et les catastrophes naturelles, pour améliorer la gestion en facilitant une analyse plus rapide et complète 
des réseaux sociaux, des politiques et des règles, et pour augmenter le traçage et la transparence au sein des chaînes d’approvisionnement. 

El auge de los macrodatos y las tecnologías de apoyo para la vigilancia de los bosques del 
mundo

R. TAYLOR, C. DAVIS, J. BRANDT, M. PARKER, T. STÄUBLE y Z. SAID

Los avances tecnológicos en la recolección, el procesamiento y la transmisión de macrodatos están facilitando el monitoreo de los bosques y 
la adopción de decisiones informadas sobre su utilización y gestión. En este artículo se describe, en primer lugar, cómo las innovaciones en 
materia de teledetección y computación en la nube facilitan la generación de datos geoespaciales con mayor frecuencia, a menor costo y en 
formatos más fáciles de utilizar. En segundo lugar, se describe la evolución de los sistemas y tecnologías con los que dar seguimiento a los 
productos forestales y los productos agrícolas vinculados a la deforestación, desde su origen hasta su uso final. En tercer lugar, se examina el 
potencial de las nuevas tecnologías de minería de datos, como el procesamiento de lenguajes naturales, la extracción de datos de sitios web (web 
scraping) y la visión artificial, para apoyar el análisis de las políticas forestales y aumentar los datos geoespaciales recolectados por teledetec-
ción. El artículo proporciona ejemplos de la forma en que se están utilizando estas tecnologías y como podrían utilizarse en el futuro para 
monitorear y enfrentarse a la deforestación, los incendios y los desastres de amenazas naturales, mejorar la gobernanza mediante un análisis 
más rápido y completo de las redes sociales, las políticas y los reglamentos, y aumentar la transparencia y la capacidad de dar seguimiento en 
las cadenas de suministro.
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In recent years, advances in remote sensing and cloud 
computing have created a whole new array of options for 
large-scale forest monitoring and field work. These technolo-
gies have enabled better detection of forest change, more 
frequently, over larger areas, at less cost and with easier 
communication channels, such as the presentation of data in 
the form of geospatially-explicit maps that can be accessed 
online. At the same time, the advent of geographic positioning 
systems (GPS), and technology-enabled ground patrols and 
forest inventories, has allowed field staff to record more 
detailed coordinate points for their observations and upload 
those data into geographic information systems (GIS). This 
generates richer data in support of local forest management, 
as well as providing means to ground-truth and refine auto-
mated systems for interpretation, visualization and analysis of 
satellite data at global, continental or national scales.

Remote sensing first emerged with the use of cameras 
mounted on planes to take aerial photographs as early as 
World War I and has transitioned to a mix of airborne and 
satellite-borne imagery in recent decades. Airborne instru-
ments – sensors attached to planes, or cameras mounted on 
drones – are still used today to capture detailed information 
about a specific forest area at higher resolution than can be 
achieved from space. Airborne light detection and ranging 
(LiDAR) sensors can capture detailed information about the 
physical structure of forests (Asner, 2009) at a resolution of 
one meter 1 m to up to ten meters, which is detailed enough 
to see individual tree crowns and map tree species distribution 
(Baldeck et al. 2015).

For satellite-based remote sensing, a major breakthrough 
occurred in 2008, when the U.S. Geological Survey opened 
all data from its Landsat satellite to the public for free 
(Wulder & Coops, 2014). permitting large-scale analyses 
through time back to 1972. Many previous mapping efforts 
had utilized freely available coarse resolution MODIS satel-
lite data, which ranges from 250 to 1000 meters in resolution. 
Suddenly, Landsat offered 30-meter resolution data—almost 
70 times better than MODIS—permitting much finer-scale 
monitoring, systematically and at global scale. Landsat 
became the “go-to” source of imagery for mapping forest 
extent and change.

Satellite imagery spatial resolution and availability con-
tinue to improve. In 2013, the European Commission and 
European Space Agency (ESA) decided to openly license 
data from the Sentinel satellites (European Space Agency, 
2013), complementing Landsat with freely available, 10-
meter data, as well as radar satellites that can see through 
cloud cover, smoke, and haze (Reiche et al. 2016). An 
increasing number of commercial satellite companies (e.g., 
Planet, TerraSar) offer high spatial resolution data (under 
3 meters) that—while costly for large-scale systematic 
analyses—can be valuable for validation, calibration, and 
verification.

In the early days of satellite imagery analysis (starting in 
the 1980s), experts visually interpreted the images and delin-
eated forest extent and deforestation by hand. For example, 
the annual deforestation monitoring system in Brazil (known 
as PRODES) still heavily relies on expert interpreters to 

INTRODUCTION

Big data, which involves computational methods that rely 
on the computing scale of cloud resources, and supporting 
technologies are increasingly being used to keep watch on 
the world’s forests and enable better decision-making over 
their use and governance(Chen, Mao, & Liu, 2014). These 
technologies are being used to monitor the biophysical struc-
ture of forests, to ensure traceability and transparency within 
supply chains, and to analyze and improve forest policy and 
governance. 

Within the field of forest monitoring, advances in remote 
sensing and cloud computing (the use of networks of remote 
servers hosted on the Internet to store, manage, and process 
data) are making it possible to monitor changes in forest 
cover and condition, as well as the extent of fires and the 
impacts of natural disasters more cost-effectively and more 
frequently than forest patrols and surveys are able to. In 
addition to remote sensing, drones and mobile technology 
are increasingly being used to monitor forests at local scales, 
often in combination with satellite and remote sensing data. 
Big data is also transforming traceability and transparency 
efforts within supply chains through sensor networks, genetic 
analysis, and smart labels. These technologies are used to 
track the chain of custody along the supply chain and to iden-
tify the taxonomy or geographic provenance of raw or pro-
cessed materials in a product. Improved traceability in supply 
chains provides a means for business and other stakeholders 
to verify if the wood or agricultural ingredients in a product 
are responsibly sourced. Finally, big data methods are 
enabling researchers to analyze legislative and policy texts 
and social and news media data to improve policies and 
governance systems. This paper provides examples of how 
the latest technology is being used in these three application 
fields, the impact it is having, and what might be possible with 
further technological development on the horizon.

FOREST MONITORING 

Historically, researchers documented the extent of and condi-
tion of forests – canopy cover, tree size, species, biodiversity, 
soil carbon content or seedling density – by boots-on-the 
ground surveys. At the national level, countries monitored 
their forests through site-based sample plots as part of a 
national forest inventory. These field-based efforts were 
resource-intensive and best suited to the scale of individual 
forest management units, protected areas, or a limited sample 
of plots across a country. Consequently, national inventories 
tended to be done infrequently, often with patchy coverage 
of remote forests that are not easily accessed by road or river. 
At a global scale, the FAO has conducted the Global Forest 
Resources Assessment at five-yearly intervals since 1948 to 
provide national statistics on forest cover extent and change 
(FAO 2015).These efforts rely primarily on statistics reported 
by countries and are thus dependent on the frequency and 
accuracy with which individual countries conduct their forest 
inventories or update forest-relevant statistics.
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manually inspect imagery to identify forest changes. By 
contrast, machine learning technologies rely on learning 
algorithms within computers that build mathematical models 
based on sample data, known as training data, and use this to 
interpret imagery without humans having to write explicit 
programs on how they perform such tasks (Bishop 2006). 
Since the early 2000s, innovative machine learning algo-
rithms have facilitated automatic mapping of forest extent, 
changes, and values, producing results faster and more 
consistently than what can be done by human interpreters. 
Cloud computing platforms (e.g., FAO SEPAL, Google Earth 
Engine, Amazon Web Services) enable these algorithms 
to process large volumes of imagery cheaply. Google Earth 
Engine, for example, combines a multi-petabyte catalog of 
satellite imagery and geospatial datasets with planetary-scale 
analysis capabilities.

These advances mean forests can be consistently charac-
terized and systematically monitored over large geographic 
areas. The University of Maryland’s ground-breaking high-
resolution maps of annual tree cover change were the hall-
mark of a new era of global monitoring of forests from space 
(M.C. Hansen et al. 2013). Other pioneer products include the 
global and pantropical maps of above-ground woody biomass 
density from (Saatchi et al. 2011) and (Baccini et al. 2012). 
They also enable detection of change in near-real time (see 
Table 1).

As forest monitoring technology has evolved, so too has 
the demand to make the resulting information public. Once 
accessible only through paper maps (or not at all), forest 
monitoring data has become widely available through online 
geoportals and databases that are simple for non-experts to 
use. The launch of the Global Forest Watch platform in 2014 
was notable in making the University of Maryland’s global 
spatial forest monitoring data accessible to the public for free 
in easy-to-understand and dynamic maps, charts, and graphs.

Corporations and academics increasingly work in collabo-
ration to improve forest monitoring methods and transfer 
expertise to government institutions. This has resulted in a 

dramatic improvement in national forest management capac-
ity over the last decade. For example, the MapBiomas effort 
in Brazil involves leading researchers and technology compa-
nies working together to produce annual land use and land 
cover maps. Official government data produced via the 
TerraClass program of the Brazilian Space Agency and 
Agricultural Ministry only covers the Legal Amazon and is 
not published every year. MapBiomas uses an automated 
algorithm processed in the cloud to process satellite imagery 
and publish land cover maps each year for the entire country. 
The MapBiomas team includes members of the Brazilian 
government as expert reviewers and strives to transfer lessons 
learned to government institutions. Beyond Brazil, five other 
Latin American countries now operate near real time alerting 
systems, and globally, a dozen countries have adapted the 
global University of Maryland annual tree cover loss product 
to their national context. Many more countries, such as 
Suriname, through its National Forest Monitoring System, are 
using some form of satellite imagery analysis as part of their 
periodic national forest inventories and/or forest reference 
emission levels.

Many prospects for remote sensing monitoring systems 
with increased accuracy, spatial resolution, and temporal fre-
quency are on the horizon. Higher resolution optical images 
will enable detection of fine-scale changes indicative of forest 
degradation rather than outright loss of tree cover (Fagan & 
DeFries 2009). Operational radar data from Sentinel-1 will 
enable detection of forest disturbances even through cloud 
cover. NASA’s new spaceborne lidar instrument (GEDI), 
mounted on the International Space Station in early 2019, 
will map biomass and forest structure from space, enabling 
more sophisticated approaches for quantifying forest carbon. 
Expansion in cloud computing capacity will enable more 
imagery to be processed more quickly. More advanced 
machine learning algorithms, (e.g., neural networks) should 
enable more accurate monitoring, and possibly prediction, of 
forest change, though the applications of these methods have 
thus far been primarily limited to high-resolution imagery, 

TABLE 1 systems detecting near-real time forest change

System geographic coverage spatial resolution
Update 

frequency

University of Maryland GLAD alerts – (Matthew C Hansen 
et al., 2016; Reiche, Hamunyela, Verbesselt, Hoekman, & 
Herold, 2018; Reiche, Verhoeven, et al., 2018).

30 degrees North to 30 
degrees South

30x30 meters Weekly

Real-Time System for Detection of Deforestation (DETER) 
(Shimabukuro, dos Santos, Formaggio, Duarte, & Rudorff, 
2016).

Brazilian Amazon 250x250 meters Monthly

Terra-I (Reymondin et al., 2012) Whole of Latin America + 
tropics

250x250 meters Weekly

Sistema de Alerta de Desmatamento (SAD) (De Souza, Hayashi, 
& Veríssimo, 2008).

Brazilian Amazon 250x250 meters Monthly

Fire Information for Resource Management System (FIRMS) 
(Davies, Ilavajhala, Min Minnie Wong, & Justice, 2009).

Global 375x375 meters Daily
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Image 1 - This cloud free 
mosaic of the Central 
African Forest Basin was 
assembled by the Joint 
Research Centre from 
daily images acquired by 
the European VGT sensor 
on board the SPOT 
satellite processed and 
distributed by the Flemish 
Technological Research 
Institute VITO. 
The image shows the vast 
size of Central Africa’s 
forests. It covers 2 million 
km2 accounts for 22% of 
the World’s humid tropical 
forests and contains the 
World’s only habitats for 
the great apes. It is also 
home to around 40 million 
people.

Image 2 - This detailed 
image (250 meter 
resolution) of the Central 
African Basin was 
acquired by the MODIS 
sensor on the US Terra 
satellite. The image shows 
the Sangha river (centre) 
and the Ubangi and Congo 
rivers to the right. The 
pink “river” is seasonally 
flooded grassland along 
the smaller Likouala river.
There are clear signs of 
forest clearance and 
degradation around the 
towns such as Ouesso on 
the Sangha river and 
Mbandaka on the Congo. 
The impact of major roads 
such as the highway 
linking Ouesso with the 
coast can also begin to be 
seen at this resolution.
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Image 3 - At resolutions of 
10 meters, as with this 
image acquired by the 
European SPOT satellite, 
the true nature of the 
“undisturbed” forest 
begins to emerge. Both 
abandoned logging roads 
(orange) and new logging 
roads (blue) can be 
accurately mapped. 
Although no longer used 
for commercial timber 
exploitation the aban-
doned logging roads do 
provide access for 
poachers hunting for 
bush-meat including the 
great apes. The roads also 
provide access for less 
intensive, but no less 
destructive, timber 
extraction by illegal 
loggers.

Image 4 - Using fine 
resolution imagery – in 
this case 2.5 metre 
resolution from the SPOT 
satellite, this image 
from the European 
Commission’s Joint 
Research Facility enables 
measurement of the width 
of logging roads, and 
identifies the extraction of 
even individual trees (the 
white holes in the grey 
intact forest canopy).
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which is computationally infeasible at large geographic 
scales (Ma et al. 2019). Mobile data collection systems, 
such as Open Data Kit and CyberTracker, will help to unite 
ground-based perspectives with remote sensing data.

New data mining technologies also have huge potential to 
augment and automate the analyses of data collected through 
remote sensing, sensor networks or field measurements. 
Historically, analysis of such data depended on supervised 
techniques. These involved manual classification of geo-
graphic regions and plots to “train” algorithms to replicate 
human classification, or the prior formulation of hypotheses 
about what characteristics of a satellite image are indicative 
of a specific type of vegetation or disturbance. For example, 
identifying forest fires with remote sensing would typically 
require manual delineation of fire extent in thousands of 
images and empirical research to formulate the relationship 
between spectral signatures, rainfall patterns, slope, and 
other biophysical variables and fire disturbance. Data mining 
techniques can reduce the need for prior classification of 
data sets or prediction of causal relationships. For instance, 
one academic study applied the “fuzzy C-means clustering 
algorithm” to identify forested regions impacted by natural 
disasters or fires with 98.8% accuracy across varied geo-
graphic contexts without human-labelled training data (Singh 
& Singh 2018). Other academic studies have demonstrated 
the accuracy of data mining methods in modelling biomass 
and carbon storage relative to methods based on allometric 
equations (Carlos R Sanquetta et al. 2015, Carlos Roberto 
Sanquetta, Wojciechowski, Paula, Corte, & Rodrigues, 2013). 
Advances in clustering methodology may allow for faster and 
more accurate unsupervised classifications of remote sensing, 

sensor network, and biometric data. One such advancement is 
spectral clustering, which groups observations into clusters 
based on similarity metrics between low-dimensional mathe-
matical representations of variability known as principal 
components. While spectral clustering consistently outper-
forms previous clustering approaches, it was not until 2018 
that spectral clustering was computationally efficient enough 
to handle remote sensing data (Dhanachandra, Manglem, & 
Chanu, 2015; Shaham et al. 2018; Tung, Wong, & Clausi, 
2010; Zhang & You, 2017). Spectral clustering is likely to 
replace traditional clustering methods in forest monitoring 
applications soon, increasing the accuracy of unsupervised 
approaches and further reducing data needs.

New data mining methods can also help reduce bias from 
seasonal, biometric, and cultural differences between geo-
graphic regions in remote sensing models, which are typically 
trained in geographies where training data is available and 
may then be applied to different geographies (Xie, Jean, 
Burke, Lobell, & Ermon, 2016). Conditional generative 
adversarial networks (cGANs) are a type of neural network 
that learns how to transform between domains of images, 
such as those taken in different seasons or regions. These 
have been used to generate ground-level views from satellite 
imagery (Deng, Zhu, & Newsam, 2018), identify road net-
works (Q. Shi, Liu, & Li, 2018), generate building footprint 
information from satellite imagery (Y. Shi, Li, & Zhu, 2019), 
and learn transformations between geographies (Kniaz, 
2018). Unsupervised approaches to learning generalizable 
features from satellite imagery have also shown promise 
in mitigating geographic biases (Jean et al. 2018). Taken 
together, these advances in machine learning and data mining 

Image 5 - By using 
different images over time 
(this image was taken two 
months after the previous) 
an observer can determine 
overall rates of timber 
extraction, as well as 
locations – information 
which can help determine 
compliance with the terms 
under which any logging 
company has been granted 
a permit to work a given 
timber concession.
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have significant potential to improve accuracy in forest moni-
toring tasks where training data is expensive to generate or 
where such data exists only in specific geographies.

In addition to satellites, wireless sensor networks are 
increasingly deployed in forests to record sounds, tempera-
ture or movement for purposes such as fire control, prevention 
of illegal logging and biodiversity monitoring. Integrated 
data mining techniques, where data mining methods such as 
clustering or anomaly detection are built into the sensors 
themselves, can improve efficiency, reduce energy use, and 
lower data throughput requirements in such networks (Czúni 
& Varga, 2014; Saoudi, Euler, Bounceur, & Kechadi, 2016). 
Geolocation and social media data within individual electron-
ic devices such as mobile phones also have huge future poten-
tial to support accurate real time detection of wildfires, floods, 
earthquakes, wildlife migrations and the spread of invasive 
species (Daume, 2016; Middleton, Middleton, & Modafferi, 
2014; Tanev, Zavarella, & Steinberger, 2017). Social media 
activity on wildfires, for example, is highly corelated to where 
and when fires occur, and can thus be used to provide early 
warnings of fire outbreaks (Boulton, Shotton, & Williams, 
2015). 

Applying forest safeguards in supply chains

Tracking the movement of materials through supply chains 
is often critical for quality control, safety and financial 
discipline along the chain. It is also useful in distinguishing 
products sourced illegally or implicated in deforestation 
from those that come from well-managed forests or farms. 
Governments can help promote the application of good 
chain of custody practice by integrating requirements for 
adequate product flow controls in regulations and compliance 
monitoring.

Supply chain traceability requires careful documentation 
of the path that product ingredients take as they move from 
the farm or forest to the end customer, including any mixing 
or transformation along the way. A traditional chain of 
custody system is literally a “paper trail” documenting the 
flow of a specific batch of materials along a supply chain. 
However, advances in information technology, internet access 

and connectivity, GPS tracking systems and product scanning 
devices, mean a modern chain of custody system can live 
mostly online. 

Labeling technologies in chain of custody systems 
facilitate rapid collection of large amounts of data that can 
be electronically time-stamped and cross-checked against 
records made at other checkpoints to detect and deter tamper-
ing (ITTO 2012). Labels containing nano-molecules or 
imprinted with bar codes can be scanned electronically. 
Others, such as RIFID labels, can be accessed using radio 
signals. Increasingly, data logging devices support data 
capture in the field for immediate or subsequent transfer to 
online databases. These devices can be handheld devices or 
integrated in existing machinery such as trucks and harvesting 
machines. Such technologies are more efficient than manual 
methods because they reduce the need for error-prone manual 
information transfer. Validation is also supported through 
the metadata automatically collected with each reporting 
event (e.g. who reported via the user-account, when the 
information was collected via the time-stamp, and where the 
information was collected via the GPS module in the device) 
(Baldwin, Markowitz, Koparova, Gerardu, & Zaelke, 2015).

Satellite-based GPS support traceability by enabling pre-
cise delineation of boundaries of forest management units and 
farms from which materials are sourced and tracking their 
transport to ports, processing and manufacturing facilities, 
and to final point of sale. 

Increasingly, governments are deploying traceability 
technologies to augment regulation of the forest products 
trade. Countries currently operating or introducing mandatory 
public timber traceability systems with centralized reporting 
platforms include Indonesia, Brazil, Peru, Guatemala, 
Honduras, Colombia, Ecuador, Panama, Liberia and Ghana. 
However, while governments have the political power to 
make reporting to a traceability system a legal requirement, 
the scope of these systems is by default limited to the 
national border. Without an overarching, international system 
to cover the complex material flows from producer, via pro-
cessing to consumer countries, the development of country by 
country mandatory traceability systems is unlikely to succeed 
in preventing products associated with illegal logging or 

The Indonesian Timber Legality Assurance System, locally known as SVLK (Sistem Verifikasi Legalitas Kayu), is illustrative 
of recent developments in public sector supply chain control. Long before a tree is harvested, concession holders enter infor-
mation in an online system on tree species, location and estimated timber volume. This generates a barcode that is attached to 
the tree. After felling, the same bar code is attached to its stump and logs. The barcode enables the logs to be tracked to the 
point of primary processing. Additional entries are made in the online system to track the timber through processing and to 
connect batches of processed products to export licenses. The system requires timber concession holders to directly enter tree 
harvesting data in the system with minimal government supervision. However, if the system detects excess harvesting it will 
lock the concession holder’s account. Authorities can also monitor the system and take action if they find irregularities. Private 
conformity assessment bodies, authorized by the National Accreditation Agency, reconcile the data provided and, where 
necessary conducting a field visit, to verify the concession holder’s legality certificate or issue a non-compliance report. 
While the system is currently focused on verifying the legal supply of timber, the Indonesian government has announced its 
intention to expand the scope to included performance assessment of concession holders and payment of non-tax revenues 
(MOEF 2018).
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forest clearing from entering global markets. While the tech-
nology is available today, the institutionalization of a compre-
hensive global traceability system remains a transnational 
governance challenge for the future. 

While mandatory traceability systems are intended to 
impede illegal logging and timber trade, they are vulnerable 
to manipulation through input of false data. They have 
even been described as “laundering machines” (EIA 2012, 
Greenpeace 2013, Kleinschmidt 2016, Nellemann 2012). If 
flawed documents, such as permits obtained fraudulently or 
allowable cuts not based on genuine forest inventories, can be 
registered in a traceability system, they effectively create 
“phantom” timber volumes that can be used to launder illegal 
wood. This problem is compounded when the traceability 
systems lack transparency and independent forest monitors 
cannot access the data in them. (JPIK 2018).

Where civil society can get access to data in government-
run traceability systems, it can use the information to expose 
inconvenient truths, by cross referencing the information in 
the system with other sources. For example, in 2016 the 
BVRio Institute launched a due diligence and risk assessment 
system for Brazilian tropical timber trade. The system has 
a big data approach, drawing from public traceability 
systems, public registries of infractions and convictions, 
publicly available data on distribution and density of com-
mercial species and spatial data from Global Forest Watch, 
the Brazilian Government and other NGOs. BVRio found 
that around 30% of 3,500 logging permits issued since 2006 
from Para and Mato Grosso had questionable or unrealistic 
volumes (BVRio 2016).

Similar big data approaches are being used at international 
level to identify risk of deforestation in agricultural commod-
ity supply chains. The Transparency for Sustainable Econo-
mies (TRASE) tool draws on production, trade, and customs 
data and modeling to trace commodity flows back to produc-
tion landscapes while identifying the actors involved. It 
identifies individual companies that export, ship and import 
a given commodity and applies an enhanced form of material 
flow analysis to link them to specific production localities 
(“TRASE,” n.d.). Initiatives like Chain Reaction Research 
also combine multiple data-types (deforestation alerts, chain-
of-custody and trade data, corporate financial and governance 
data) to assess the exposure of individual companies to mate-
rial financial risks within agricultural commodity chains 
(Graham, Thoumi, Drazen, & Seymour, 2018). The “Global 
Forest Watch Pro” application combines remote sensing data 
and cloud computing to help companies asses risk of tree 
cover loss occurring in the farms or supply sheds of the mills, 
silos, or slaughterhouses from which they source (Amaral & 
Lloyd, 2019).

The Open Timber Portal is another example of a transpar-
ency platform enabled by technology. The portal provides 
information about forest management practices and legal 
compliance in participating countries. It compiles information 
from three different sources: official concession boundaries 
and registered timber producers from the government; docu-
ments uploaded voluntarily by timber producers to demon-
strate compliance; and observations by third party forest 

monitors (“Open Timber Portal,” n.d.). The portal enables 
geospatial data, legal documents, and allegations of non-
compliance from these diverse sources to be consolidated and 
presented in user-friendly formats. This transparent informa-
tion sharing means all parties can upload data to challenge, 
verify or refute information claims made by others. 

New forensic methodologies are being used to query 
claims around the origins or contents of agricultural, forest 
and wildlife products. For example, stable isotope analysis is 
commonly used to determine origin and subsequent legality 
of food products and more recently, timber (Camin et al. 
2017, Dormontt et al. 2015). Likewise, genetic analyses have 
been successfully used to bolster prosecutions in illicit wild-
life and timber court cases(Janjua, Fakhar-I-Abbas, William, 
Malik, & Mehr, 2017, Wasser et al. 2018). Newly applied 
wood identification tools are being scaled for use by both 
inspectors to screen suspect material in ports of entry and by 
scientists in the laboratory to generate prosecutorial evidence 
against entities accused of sourcing wood illegally. 

Within the forest products industry, techniques such as 
chemical and genetic analysis can identify a timber species 
and its origin from elements present in a wood product 
(UNODC 2016). When a robust collection of physical refer-
ence samples has been gathered – coming from the natural 
range of a timber species – these techniques can validate or 
invalidate the declared species and origin claims on documen-
tation. This provides authorities, buyers of the products, 
or activists with a means of testing suspect claims about 
the content of a product or its source. Wood identification 
technologies include: 

• Visual methods – visual observation and analysis of 
the anatomical patterns in a wood product are used 
to identify the species. This ranges from simple visual 
inspections by a frontline official with the aid of a 
hand-held magnification lens, through to the use of 
sophisticated image capture devices and processing 
algorithms. The main constraint on these tools is 
human capital and the lack of developed image-based 
reference databases depicting the natural variations in 
wood structure within and across species.

• Chemical methods – Mass spectrometry is used to 
analyze the phytochemicals laid down in heartwood to 
distinguish between different species that look similar. 
Stable isotope ratio analysis probes variations in the 
presence of non-radioactive isotopes such as oxygen, 
hydrogen and nitrogen. The ratios between these 
isotopes in trees differ across landscapes depending on 
geology and weather patterns. Radiocarbon dating can 
be used to determine the age of timber samples and 
whether harvesting occurred after regulations protect-
ing the species came into effect or after the species was 
listed under the Convention on international Trade in 
Endangered Species.

• Genetic methods – Genetic analysis through the use 
of techniques such as DNA barcoding, DNA finger-
printing and phylogenetics can be used to accurately 
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determine the species and/or harvest origin of wood 
products, with caveats. To date, genetic analysis of 
wood products is hindered by challenges in obtaining 
consistent, high-quality DNA from processed wood 
products. An additional barrier is the lack of genetic 
reference databases for commercial timber species 
and their harvest origins along with the high cost of 
developing such databases (Galpern, Manseau, & 
Wilson, 2012).

Some examples of how wood identification technologies 
are used include:

• If a log is falsely labelled as coming from country “a”, 
these techniques can be used to prove the log was 
smuggled from country “b” which has a log export 
ban. 

• To identify tropical hardwoods in charcoal; a WWF 
study found 61 percent of barbecues in Germany at 
risk with 42 percent of charcoal samples containing 
tropical woods (WWF Deutschland, 2018), 

• To identify pulp from tropical hardwoods in books; 
a WWF study found 19 out of 51 German children’s 
books produced in south east Asia contained pulp 
from tropical hardwoods (Peter Hirschberger, 
Jokiel, Plaep, & Zahnen, 2010).

• During the hunt for the people who illegally chopped 
down big leaf maple in Gifford Pinchot National For-
est in Washington in 2015, investigators used genetic 
fingerprinting to match planks seized at a sawmill to 
the exact stumps in the forest from which the timber 
had come (Irwin, 2019). 

• Stable isotope ratio analysis was used to show that 
Mongolian Oak purchased by a US hardwood-floor 
retailer was illegally sourced from the Russian Far 
East rather than legal stocks in China (Irwin, 2019). 

POLICY AND GOVERNANCE

Big data technologies can also be deployed to augment efforts 
to strengthen forest policies and governance. Policy reforms 
are usually complicated by: procedural challenges in ensuring 
that all stakeholder perspectives are voiced; the lack of ready 
means to detect social wrongs and impacts relative to 
biophysical conditions; the tendency for relevant regulations 
and functions to be spread across multiple line agencies 
or levels of government; and related potential for conflicts 
between laws or discrepancies between the letter of the law 
and administrative procedures as practiced. Text mining 
and natural language processing computational methods 
bring promises of scalable, fast-paced monitoring and 
analysis of such complexity within policy implementation 
and governance systems. 

Text mining involves extracting underlying statistics from 
text such as word count and broad topics, while natural 
language processing details methods for analyzing the latent 

meaning and structure of text, such as actions, events, moods, 
and sentiment (Grimmer & Stewart, 2013). Text mining is 
currently applied in several sectors to prioritize policy agenda 
and streamline regulatory compliance. For instance, the World 
Bank applies text mining techniques to identifying policy 
priorities in presidential speeches to establish country-level 
drivers of long-term growth (Calvo-González, Eizmendi, & 
Reyes, 2018). Organizations such as the World Anti-Doping 
Agency also apply text mining algorithms to identify athletes 
who may be breaching doping regulations (Hong Bui 2018). 
The Oak Ridge National Laboratory uses text mining to 
identify drivers of clean energy innovation by analyzing 
investments and project finance documents (Lin et al. 2016). 
Text mining is also used to identify wildlife and environmen-
tal threats in oil and gas permits (Nasdaq, n.d.). With broad 
success across a variety of government and sectoral applica-
tions, these methodologies may also allow for faster, more 
efficient policy analysis and feedback during agenda setting, 
policy creation, and evaluation in the forestry sector.

Data mining methodologies have significant potential to 
improve monitoring and evaluation of the political and social 
economy around forests, which is an important but understud-
ied aspect of forest monitoring (Mclain, Guariguata, Lawry, 
& Reed, 2019). They have similar potential to support forest 
governance monitoring, which encompasses the accountabil-
ity, effectiveness, efficiency and fairness of policy and legal 
frameworks, decision making processes, and their implemen-
tation (FAO, 2011). Monitoring of indicators relevant to these 
issues has primarily relied on traditional survey methods, 
with researchers gathering data directly from field interviews 
and surveys (Jackson et al. 2004). However, advances in 
natural language processing and data mining are beginning to 
enable real-time, quantitative assessments of the impact of 
policy reforms and better understanding of contextual issues 
such as land tenure conflicts. Global news media coverage 
databases, such as the Global Database of Events, Languages, 
and Tone (GDELT) and the Integrated Crisis Early Warning 
System (ICEWS) provide detailed information about news 
events happening globally in real time. These data sources 
have recently been used to map social conflict (Sehgal, 2018), 
natural resource conflict (Wayland & Kuniholm, 2016), and 
political movements (Gao, Leetaru, Hu, Cioffi-Revilla, & 
Schrodt 2013). These data sources and methodologies bring 
significant potential to understand land driven conflict, social 
opinions in forest policy reforms, and shifts in government 
agenda through automated analysis of news media.

Data mining technologies can also be deployed to support 
social network analysis, to produce insights on the relation-
ships that organizations and individuals have with each other, 
including the most powerful and important actors in a given 
social network. These “champions” can support the long-term 
success of forest conservation or restoration initiatives by 
facilitating information and knowledge transfer, influencing 
policy, and encouraging action (Paletto, Balest, Demeo, 
Giacovelli, & Grilli, 2016). Policy and legislative documents, 
including national and subnational plans and environmental 
policies, contain vast amounts of information relevant to 
forest monitoring that have yet to be tapped into. Data mining 
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approaches can strengthen comparative policy analyses to 
inform policy-makers. (Cannon, Nakayama, Sasaki, & 
Rossiter, 2018) analyzed the rapid shifts of Turkey’s Syria 
policies with text mining, finding reliable, valid, and general-
izable results that greatly reduced the timeframe of policy 
analysis. (Ash, Chen, Delgado, Fierro, & Lin, 2018) found 
that machine learning models of judicial documents can 
accurately classify the impact of individual cases on policy. 
(Gilardi & Wüest, 2018) developed an end-to-end methodol-
ogy for comparative policy analysis, finding that automated 
approaches to policy analyses increase transparency, facilitate 
replication, and allow for retroactive adjustments to and the 
scaling of existing analyses. 

CONCLUSIONS

Forest stakeholders of all stripes are benefitting from faster 
computation of evermore data from earth observation, value 
chains and the data mining of texts and media. New technolo-
gies are enabling the transformation of this data into informa-
tion that is more accessible, actionable and timely, making it 
harder to hide activities that harm forests or people living 
in and around them. Big data is shining a light on a diverse 
array of problems – illegal logging in remote frontiers, the 
willing purchase of commodities associated with deforesta-
tion, corrupt allocation of permits to log or clear forests, 
encroachment on the land of indigenous peoples without their 
consent, and official endorsement of implausible statistics. 

Generation of data-driven insights is a necessary but 
insufficient condition for sound management of the Earth’s 
forest assets. Quality information may fall on deaf ears 
because political will is lacking. It may not motivate remedial 
action due to fundamental flaws in governance. It may stay 
hidden in “black-box” government and corporate systems, 
denying access to civil-society watch-dogs or marginalized 
communities that it would otherwise benefit. These challenges 
are compounded by a confusing plethora of competing 
methodologies and data sources. This provides cover for 
lack of action and prevents comprehensive, transparent moni-
toring of progress towards global forest goals and corporate 
commitments.

That said, the diversity of forest data can also make forest 
sector actor more accountable. The multiple ways forest data 
can be generated – from high resolution satellite images, to 
mining of the “twittersphere”, and genetic fingerprinting in a 
laboratory – ultimately make it harder to keep information 
hidden. This can manifest in a virtuous cycle that drives trans-
parency. For example, the incentive for corrupt officials to 
obscure data on who is taking what volume of timber from a 
place will diminish if this can be discerned independently 
from satellite data and the mining of customs data. Similarly, 
the ability of an inspector or auditor to extract a kick-back by 
turning a bind-eye to a human rights violation, will diminish 
if that same violation is likely to be pinpointed through 
mining social media activity. If politicians are repeatedly 
queried on why their forests statistics tell a different story 
to data derived from independent geospatial data platforms, 
they may be motivated to upgrade their own forest monitoring 

systems. If companies that disclose very little about the sus-
tainability of their supply chains are constantly facing down 
accusations of poor practice by campaigners, they might 
be moved to set ambitious sustainability targets and report 
openly and accurately on progress towards them. 

While capacities and tools for forest monitoring will 
continue to improve, trade-offs will persist between the 
extent, resolution, precision, accuracy, and frequency of 
update of geospatial data (Fagan & DeFries, 2009). In devel-
oping forest monitoring systems, the key questions to ask are: 
what is the intended purpose of the system and what informa-
tion is needed to fulfill that purpose? For example, a system 
to monitor national-level forest carbon changes for REDD+ 
will have different technical requirements than a system 
for quickly detecting illegal clearing within a national park. 
The purpose determines minimum requirements for: spatial 
resolution (what is the smallest object that can be distin-
guished): temporal resolution (how often does the data 
refresh); repeatability (can the methods be reproduced and 
compared across time to create a longitudinal record of 
changes); and affordability – lower cost systems are more 
likely to remain operational for large areas into the future 
(Davis & Peterson, 2016).
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