Skip to main content
padlock icon - secure page this page is secure

Non-destructive measurement of artificial near-surface cracks for railhead inspection

Buy Article:

$22.00 + tax (Refund Policy)

This paper delivers a study involving the inspection of artificial surface cracks with depths ranging from 0.25-2.5 mm from the surface and with a crack angle of 30°, which is a typical angle for surface cracks in railheads. The inspections were conducted using three different techniques: phased array ultrasonics, single-element ultrasonics and alternating current potential drop (ACPD). For the ultrasonic techniques, the study focused on employing either longitudinal or shear wave signals. In the railway industry, shallow surface cracks in railheads are caused by rolling contact fatigue (RCF). In this study, artificial defects were made, allowing the authors to explore the extent to which the ultrasonic measurement techniques can detect such defects. The negative effect of a dead zone near to the surface in the ultrasonic tests was reduced by using a wedge attachment. A discussion on the extent to which the techniques can be used in field tests was also provided. The most important result is that shallow cracks ranging from 0.25-2.5 mm were successfully characterised with acceptable accuracy. The 2.5 mm-deep crack can be measured with an accuracy of 0.8% using a 20 MHz single-element probe and with an accuracy of 3.5% using a 5 MHz phased array (64 elements, 0.6 mm pitch). The characterisations were performed using a filtering method that was developed in this study.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more