Skip to main content
padlock icon - secure page this page is secure

Structural health monitoring of composite pressure vessels using guided ultrasonic waves

Buy Article:

$17.00 + tax (Refund Policy)

Composite pressure vessels are important components in the storage of gases under high pressure. Among others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre-reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material and thus reduce the remaining lifetime of the tested component. Therefore, a truly non-destructive structural health monitoring (SHM) system would not only ensure a safer usage and extended lifetime, but also remove the necessity for periodic inspection and the testing of pressure vessels. The authors propose the use of guided ultrasonic waves, which have the potential to detect the main damage types, such as cracking in the metal liner, fibre breaks and composite matrix delamination. For the design of such an SHM system, multimodal ultrasonic wave propagation and defect-mode interaction must be fully understood. In this paper, simulation results obtained by means of finite element modelling (FEM) are presented. Based on the findings, suggestions are made regarding appropriate wave modes and their interaction with different flaw types, as well as the necessary excitation and suitable sensor configurations. Finally, a first approach for a reliable SHM system for composite pressure vessels is suggested.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 March 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more