Skip to main content
padlock icon - secure page this page is secure

Use of non-linear ultrasonic guided waves for early damage detection

Buy Article:

$22.00 + tax (Refund Policy)

Elastic waves provide a number of methods to detect damage or material degradation. Ultrasonic guided waves are elastic waves that propagate in bounded geometries. The complex constructive and destructive interference patterns enable the waveguide cross-section to be fully energised and the waves to propagate long distances. Linear analysis of guided waves permits the detection of changes in linear elastic constants and acoustic impedance changes that cause reflections and scattering. Non-linear analysis of guided waves enables the detection of small changes in the microstructure of the material that do not affect the linear elastic constants or result in detectable scattering. It is the distortion of the guided waves resulting from the microstructural changes that causes the generation of higher harmonics, which are then representative of the early stages of degradation. The ability of non-linear ultrasonic guided waves to detect early degradation, sometimes referred to as damage precursors, is extremely attractive for structural health monitoring-enabled condition-based maintenance. The basis and methodology for utilising guided waves for early damage detection is discussed. Then, as an example, the ability of the fundamental shear horizontal mode to characterise fatigue damage prior to the initiation of a macroscale crack is demonstrated on a set of 2024-T3 aluminium plates.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: April 1, 2015

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more