Skip to main content
padlock icon - secure page this page is secure

An accelerated RAMLA reconstruction algorithm for X-ray cone-beam CT

Buy Article:

$22.00 + tax (Refund Policy)

Iterative image reconstruction algorithms have many advantages over analytical image reconstruction algorithms in computed tomography. A widely applied iterative algorithm is OSEM (ordered subsets expectation maximisation), which has good reconstructed image quality and costs less in computation time. Compared with the conventional OSEM algorithm, another OS method RAMLA (row action maximum likelihood algorithm) can not only bring about significant acceleration in the iterative reconstruction, but also outperforms the OSEM in its convergence rate. In this paper, an accelerated RAMLA algorithm (ARAMLA) is proposed and applied to X-ray cone-beam CT image reconstruction. By increasing the step size of the correction factor, the ARAMLA algorithm can further speed up the RAMLA algorithm while still retaining its convergence properties. A graphics processing unit (GPU)-based implementation of the ARAMLA is also developed for greatly reducing the computation time per iteration. Experimental results show that to achieve the same image quality as in RAMLA, ARAMLA, with an accelerating factor of 2, requires only about half the number of iterations as RAMLA.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: May 1, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more