
Non-contact characterisation of conductivity gradient in isotropic polycrystalline graphite using inductance spectroscopy measurements
The two main graphite ageing processes in advanced gas-cooled reactors (AGRs) are fast neutron damage and radiolytic graphite oxidation. These processes change the properties of the graphite core and lead to a reduction in the graphite density, ie a weight loss. Electrical conductivity
measurement of the graphite material is among the possible methods for estimating the weight loss and hence provides a measure of the graphite ageing. The inductance spectroscopy technique using eddy current sensors has been implemented in a wide variety of NDT applications, since it enables
the possibility of extracting the electrical parameters variation from eddy current measurements and examining more fully the internal material structure.
In this paper we present a non-contact eddy current method for determining non-destructively the electrical conductivity gradient through 100 mm-thick graphite sections using inductive spectroscopic measurements collected by a gradiometer. The method employs the commercial finite element software COMSOL to generate the data from a model of a real profile distribution. This data is translated to the profile conductivity of the graphite test object via the solution of an inverse problem. The linear Tikhonov regularisation method and the non-linear regularised Gauss Newton technique are employed in the solution of the inverse problem. During the optimisation, the forward problem is evaluated using COMSOL. Numerical optimisation tests have been carried out for different cases of step conductivity profiles. Initial results using simulated data show that representative estimates of the conductivity profile of the modelled graphite sections have been obtained.
In this paper we present a non-contact eddy current method for determining non-destructively the electrical conductivity gradient through 100 mm-thick graphite sections using inductive spectroscopic measurements collected by a gradiometer. The method employs the commercial finite element software COMSOL to generate the data from a model of a real profile distribution. This data is translated to the profile conductivity of the graphite test object via the solution of an inverse problem. The linear Tikhonov regularisation method and the non-linear regularised Gauss Newton technique are employed in the solution of the inverse problem. During the optimisation, the forward problem is evaluated using COMSOL. Numerical optimisation tests have been carried out for different cases of step conductivity profiles. Initial results using simulated data show that representative estimates of the conductivity profile of the modelled graphite sections have been obtained.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Document Type: Research Article
Affiliations: 1 School of Electronic and Electrical Engineering, University of Manchester M60 1QD, UK. bachirdekdoukpostgradmanchester.ac.uk
Publication date: February 1, 2011
- Official Journal of The British Institute of Non-Destructive Testing - includes original research and devlopment papers, technical and scientific reviews and case studies in the fields of NDT and CM.
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Information for Advertisers
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites