Skip to main content
padlock icon - secure page this page is secure

Accuracy estimation of detection of casting defects in X-ray images using some statistical techniques

Buy Article:

$22.00 + tax (Refund Policy)

Casting is one of the most important processes in the manufacture of parts for various kinds of industries, among which the automotive industry stands out. Like every manufacturing process, there is the possibility of the occurrence of defects in the materials from which the parts are made, as well as of the appearance of faults during their operation. One of the most important tools for verifying the integrity of cast parts is radioscopy. This paper presents pattern recognition methodologies in radioscopic images of cast automotive parts for the detection of defects. Image processing techniques were applied to extract features to be used as input of the pattern classifiers developed by artificial neural networks. To estimate the accuracy of the classifiers, use was made of random selection techniques with sample reposition (Bootstrap technique) and without sample reposition. This work can be considered innovative in that field of research, and the results obtained motivate this paper.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Bootstrap; Casting defects; accuracy estimation; image processing; radioscopy

Document Type: Research Article

Publication date: October 1, 2007

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more