Skip to main content
padlock icon - secure page this page is secure

Artificial intelligence techniques for the automatic interpretation of data from non-destructive testing

Buy Article:

$22.00 + tax (Refund Policy)

This paper attempts to summarise the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from non-destructive testing (NDT). Problems in the rail transport domain are mainly discussed. However, a majority of the emphasis in this paper is laid on rail inspection problems, since it was believed that the review would provide a perfect ground to the authors in pursuing further work within the rail inspection area.

NDT is a broad name for a variety of methods and procedures concerned with all aspects of uniformity, quality and serviceability of materials and structures, without causing damage to the material that is being inspected. During the past several years, problems concerning the automatic interpretation of data from NDT have received good attention and have stimulated interests in other areas like transportation, for making key assessments within some of its subject areas. Rail, air and marine industries together with bridge inspection and pavement maintenance are good examples of such areas where a considerable amount of work has been done. Such work neatly splits into two schools. The first school investigates the classical usage of data by an experienced human operator to determine the condition of the inspected material or structure. The other school focuses attention on the automatic interpretation of NDT data using AI techniques, in determining the result of inspection.

The scope of this paper is only limited to the automatic interpretation of data from NDT, with the goal of assessing embedded flaws as quickly and accurately as possible in a cost effective fashion. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in the area. A secondary goal was to provide an insight into possible research methods concerning railway sleeper inspection by automatic interpretation of data. A brief introduction is provided for the benefit of the readers unfamiliar with the techniques.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Computer Engineering, Dalarna University, Borlange 78188, Sweden and the School of Engineering, Napier University, Edinburgh EH10 5DT, Scotland. 2: Department of Computer Engineering, Dalarna University, Borlange 78188, Sweden. 3: School of Engineering, Napier University, Edinburgh EH10 5DT, Scotland

Publication date: January 1, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more